You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
4.9 KiB
166 lines
4.9 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
struct Record {
|
|
std::vector<float> data;
|
|
std::vector<int32_t> shape;
|
|
};
|
|
|
|
Record ProcessALine(const std::string &line) {
|
|
VLOG(3) << "process a line";
|
|
std::vector<std::string> columns;
|
|
split(line, '\t', &columns);
|
|
CHECK_EQ(columns.size(), 2UL)
|
|
<< "data format error, should be <data>\t<shape>";
|
|
|
|
Record record;
|
|
std::vector<std::string> data_strs;
|
|
split(columns[0], ' ', &data_strs);
|
|
for (auto &d : data_strs) {
|
|
record.data.push_back(std::stof(d));
|
|
}
|
|
|
|
std::vector<std::string> shape_strs;
|
|
split(columns[1], ' ', &shape_strs);
|
|
for (auto &s : shape_strs) {
|
|
record.shape.push_back(std::stoi(s));
|
|
}
|
|
VLOG(3) << "data size " << record.data.size();
|
|
VLOG(3) << "data shape size " << record.shape.size();
|
|
return record;
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *cfg) {
|
|
cfg->SetModel(FLAGS_infer_model + "/__model__",
|
|
FLAGS_infer_model + "/__params__");
|
|
cfg->DisableGpu();
|
|
cfg->SwitchIrDebug();
|
|
cfg->SwitchSpecifyInputNames(false);
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
PADDLE_ENFORCE_EQ(
|
|
FLAGS_test_all_data, 0,
|
|
paddle::platform::errors::Fatal("Only have single batch of data."));
|
|
std::string line;
|
|
std::ifstream file(FLAGS_infer_data);
|
|
std::getline(file, line);
|
|
auto record = ProcessALine(line);
|
|
|
|
PaddleTensor input;
|
|
input.shape = record.shape;
|
|
input.dtype = PaddleDType::FLOAT32;
|
|
size_t input_size = record.data.size() * sizeof(float);
|
|
input.data.Resize(input_size);
|
|
memcpy(input.data.data(), record.data.data(), input_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
input_slots.assign({input});
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
// ocr, mobilenet and se_resnext50
|
|
void profile(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
// cfg.pass_builder()->TurnOnDebug();
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
std::string line;
|
|
std::ifstream file(FLAGS_refer_result);
|
|
std::getline(file, line);
|
|
auto refer = ProcessALine(line);
|
|
file.close();
|
|
|
|
PADDLE_ENFORCE_GT(outputs.size(), 0,
|
|
paddle::platform::errors::Fatal(
|
|
"The size of output should be greater than 0."));
|
|
auto &output = outputs.back().front();
|
|
size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
|
|
CHECK_EQ(numel, refer.data.size());
|
|
for (size_t i = 0; i < numel; ++i) {
|
|
EXPECT_NEAR(static_cast<float *>(output.data.data())[i], refer.data[i],
|
|
1e-5);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Analyzer_vis, profile) { profile(); }
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_vis, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
GetFuseStatis(predictor.get(), &num_ops);
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
void compare(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
TEST(Analyzer_vis, compare) { compare(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_vis, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|