You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
4.9 KiB
128 lines
4.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct MulFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
void default_elementwise_mul(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x,
|
|
const framework::Tensor* y, framework::Tensor* z) {
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
|
|
MulFunctor<T>(), z);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
std::is_floating_point<T>::value &&
|
|
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_mul(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
framework::Tensor* z) {
|
|
auto blas = math::GetBlas<DeviceContext, T>(ctx);
|
|
blas.VMUL(x->numel(), x->data<T>(), y->data<T>(),
|
|
z->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
!std::is_floating_point<T>::value ||
|
|
!std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_mul(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
framework::Tensor* z) {
|
|
default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseMulKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto x_var = ctx.InputVar("X");
|
|
PADDLE_ENFORCE(x_var != nullptr,
|
|
"Cannot get input Variable X, variable name = %s",
|
|
ctx.op().Input("X"));
|
|
auto* y = ctx.Input<framework::LoDTensor>("Y");
|
|
|
|
framework::Tensor x, *z;
|
|
if (x_var->IsType<framework::SelectedRows>()) {
|
|
PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1,
|
|
"For elementwise_op, if X is Sparse, Y must be scalar.");
|
|
auto& x_sele = x_var->Get<framework::SelectedRows>();
|
|
auto out_sele = ctx.Output<framework::SelectedRows>("Out");
|
|
x = x_sele.value();
|
|
out_sele->set_rows(x_sele.rows());
|
|
out_sele->set_height(x_sele.height());
|
|
out_sele->mutable_value()->Resize(x_sele.value().dims());
|
|
out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
|
|
z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
|
|
} else if (x_var->IsType<framework::LoDTensor>()) {
|
|
x = x_var->Get<framework::LoDTensor>();
|
|
z = ctx.Output<framework::LoDTensor>("Out");
|
|
} else {
|
|
PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
|
|
framework::ToTypeName(x_var->Type()));
|
|
}
|
|
|
|
z->mutable_data<T>(ctx.GetPlace());
|
|
if (x.numel() == y->numel()) {
|
|
elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
|
|
} else {
|
|
default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct MulGradDX {
|
|
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct MulGradDY {
|
|
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
ElemwiseGradKernel<T>::Compute(ctx);
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* out = dout; // out is not necessary
|
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
|
|
ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|