You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
300 lines
13 KiB
300 lines
13 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/malloc.h"
|
|
#include "paddle/fluid/platform/mkldnn_reuse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using framework::DataLayout;
|
|
|
|
template <typename T>
|
|
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
const bool is_test = ctx.Attr<bool>("is_test");
|
|
PADDLE_ENFORCE(
|
|
is_test == true,
|
|
"ConvTransposeMKLDNN works only for inference!. Set is_test = True");
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
|
|
input->format() != mkldnn::memory::format::format_undef,
|
|
"Wrong layout/format set for Input tensor");
|
|
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
|
|
filter->format() != mkldnn::memory::format::format_undef,
|
|
"Wrong layout/format set for Filter tensor");
|
|
PADDLE_ENFORCE(input->dims().size() == 4,
|
|
"Input must be with 4 dimensions, i.e. NCHW");
|
|
PADDLE_ENFORCE(filter->dims().size() == 4,
|
|
"Filter must be with 4 dimensions, i.e. OIHW");
|
|
|
|
if (bias) {
|
|
PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
|
|
bias->format() != mkldnn::memory::format::format_undef,
|
|
"Wrong layout/format set for Bias tensor");
|
|
PADDLE_ENFORCE(bias->dims().size() == 1,
|
|
"Bias must only have 1 dimension, i.e. X");
|
|
}
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
// TODO(tpatejko): add support for dilation
|
|
PADDLE_ENFORCE(
|
|
dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
|
|
"dilation in convolution is not implemented yet");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> iohw_weights_tz =
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
std::vector<int> weights_tz = iohw_weights_tz;
|
|
// IOHW -> OIHW
|
|
weights_tz[0] = iohw_weights_tz[1];
|
|
weights_tz[1] = iohw_weights_tz[0];
|
|
|
|
// Custom Reorder from IOHW to OIHW
|
|
auto iohw2oihw_reorder =
|
|
[&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
|
|
int o = iohw_weights_tz[1];
|
|
int c = iohw_weights_tz[0];
|
|
int h = iohw_weights_tz[2];
|
|
int w = iohw_weights_tz[3];
|
|
std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
|
|
std::default_delete<T[]>());
|
|
for (int i = 0; i < c; ++i) {
|
|
for (int j = 0; j < o; ++j) {
|
|
int in_offset = j * h * w + i * o * h * w;
|
|
int out_offset = j * c * h * w + i * h * w;
|
|
std::memcpy(&(reordered_filter_data.get())[out_offset],
|
|
&filter_data[in_offset], h * w * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return reordered_filter_data;
|
|
};
|
|
|
|
int g = std::max(groups, 1);
|
|
if (g > 1) {
|
|
int o = weights_tz[0];
|
|
int i = weights_tz[1];
|
|
int h = weights_tz[2];
|
|
int w = weights_tz[3];
|
|
weights_tz.resize(5);
|
|
weights_tz[0] = g;
|
|
weights_tz[1] = o / g;
|
|
weights_tz[2] = i;
|
|
weights_tz[3] = h;
|
|
weights_tz[4] = w;
|
|
}
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
// Get unique name for storing MKLDNN primitives
|
|
const std::string key = platform::ConvTransposeMKLDNNHandler::GetHash(
|
|
src_tz, weights_tz, strides, paddings, dilations, groups,
|
|
ctx.op().Output("Output"));
|
|
const std::string key_conv_transpose_pd = key + "@conv_transpose_pd";
|
|
|
|
std::vector<mkldnn::primitive> pipeline;
|
|
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
|
|
auto user_weights_md =
|
|
platform::MKLDNNMemDesc({weights_tz}, platform::MKLDNNGetDataType<T>(),
|
|
(g == 1) ? mkldnn::memory::format::oihw
|
|
: mkldnn::memory::format::goihw);
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
auto chosen_memory_format =
|
|
platform::data_format_to_memory_format(data_format);
|
|
bool fuse_relu = ctx.Attr<bool>("fuse_relu");
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
std::vector<int> bias_tz; // TODO(mgallus): avoid empty vector creation.
|
|
// Currently used whenever bias is != nullptr.
|
|
auto dst_md = platform::MKLDNNMemDesc(
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
// create a deconv(conv transpose) primitive descriptor and save it for
|
|
// usage in backward
|
|
std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
|
|
conv_transpose_pd;
|
|
auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
|
|
: mkldnn::prop_kind::forward_training;
|
|
if (bias) {
|
|
bias_tz = paddle::framework::vectorize2int(bias->dims());
|
|
auto bias_md = platform::MKLDNNMemDesc(
|
|
bias_tz, platform::MKLDNNGetDataType<T>(), mkldnn::memory::format::x);
|
|
conv_transpose_pd = ConvTransposeFwdPrimitiveDesc(
|
|
src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
|
|
fuse_relu, fwd_prop_kind);
|
|
} else {
|
|
conv_transpose_pd = ConvTransposeFwdPrimitiveDesc(
|
|
src_md, weights_md, dst_md, strides, paddings, mkldnn_engine,
|
|
fuse_relu, fwd_prop_kind);
|
|
}
|
|
// Save conv_pd/src_memory/weights_memory for backward pass
|
|
if (!is_test) dev_ctx.SetBlob(key_conv_transpose_pd, conv_transpose_pd);
|
|
|
|
platform::ConvTransposeMKLDNNHandler handler(conv_transpose_pd, dev_ctx,
|
|
mkldnn_engine, key);
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
auto user_src_memory_p = handler.AcquireSrcMemory(
|
|
user_src_md, platform::to_void_cast<T>(input_data));
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
user_weights_md, platform::to_void_cast<T>(filter_data),
|
|
is_test ? iohw2oihw_reorder : platform::user_function());
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
auto src_memory_p =
|
|
handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
|
|
user_weights_memory_p, pipeline, is_test);
|
|
|
|
std::shared_ptr<mkldnn::memory> dst_memory_p;
|
|
|
|
auto output_data = output->mutable_data<T>(
|
|
ctx.GetPlace(), paddle::memory::Allocator::kDefault,
|
|
handler.GetDstMemorySize());
|
|
dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
|
|
platform::to_void_cast<T>(output_data));
|
|
|
|
// create convolution op primitive
|
|
std::shared_ptr<mkldnn::deconvolution_forward> conv_p;
|
|
if (bias) {
|
|
const T* bias_data = bias->data<T>();
|
|
auto user_bias_md =
|
|
platform::MKLDNNMemDesc({bias_tz}, platform::MKLDNNGetDataType<T>(),
|
|
mkldnn::memory::format::x);
|
|
auto user_bias_memory_p = handler.AcquireBiasMemory(
|
|
user_bias_md, platform::to_void_cast<T>(bias_data));
|
|
|
|
auto bias_memory_p =
|
|
handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
|
|
conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
|
|
bias_memory_p, dst_memory_p);
|
|
} else {
|
|
conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
|
|
dst_memory_p);
|
|
}
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
pipeline.push_back(*conv_p);
|
|
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
|
|
}
|
|
|
|
private:
|
|
mkldnn::primitive_attr CreatePostOps(bool fuse_relu) const {
|
|
mkldnn::primitive_attr conv_attr;
|
|
mkldnn::post_ops post_operations;
|
|
// Fusion with ReLU layer is executed through the PostOps feature. Create a
|
|
// PostOps object and configure it to execute an eltwise relu operation.
|
|
if (fuse_relu) {
|
|
constexpr float scale = 1.0f;
|
|
constexpr float negative_slope = 0.0f;
|
|
constexpr float placeholder = 0.0f;
|
|
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
|
|
negative_slope, placeholder);
|
|
}
|
|
conv_attr.set_post_ops(post_operations);
|
|
return conv_attr;
|
|
}
|
|
|
|
std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>
|
|
ConvTransposeFwdPrimitiveDesc(
|
|
const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
|
|
const mkldnn::memory::desc& dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings, const mkldnn::engine& engine,
|
|
const bool fuse_relu, mkldnn::prop_kind fwd_prop_kind) const {
|
|
mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
|
|
mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};
|
|
|
|
auto deconv_desc = mkldnn::deconvolution_forward::desc(
|
|
fwd_prop_kind, mkldnn::deconvolution_direct, src, weights, dst,
|
|
stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
|
|
|
|
mkldnn::primitive_attr deconv_attr = CreatePostOps(fuse_relu);
|
|
|
|
auto p_conv_transpose_pd =
|
|
new mkldnn::deconvolution_forward::primitive_desc(deconv_desc,
|
|
deconv_attr, engine);
|
|
|
|
return std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>(
|
|
p_conv_transpose_pd);
|
|
}
|
|
|
|
std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>
|
|
ConvTransposeFwdPrimitiveDesc(
|
|
const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
|
|
const mkldnn::memory::desc& bias, const mkldnn::memory::desc& dst,
|
|
const std::vector<int>& strides, const std::vector<int>& paddings,
|
|
const mkldnn::engine& engine, const bool fuse_relu,
|
|
mkldnn::prop_kind fwd_prop_kind) const {
|
|
mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
|
|
mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};
|
|
|
|
auto deconv_desc = mkldnn::deconvolution_forward::desc(
|
|
fwd_prop_kind, mkldnn::deconvolution_direct, src, weights, bias, dst,
|
|
stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
|
|
|
|
mkldnn::primitive_attr deconv_attr = CreatePostOps(fuse_relu);
|
|
|
|
auto p_conv_transpose_pd =
|
|
new mkldnn::deconvolution_forward::primitive_desc(deconv_desc,
|
|
deconv_attr, engine);
|
|
|
|
return std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>(
|
|
p_conv_transpose_pd);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConvTransposeMKLDNNOpKernel<float>);
|