You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
5.0 KiB
132 lines
5.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/malloc.h"
|
|
#include "paddle/fluid/platform/mkldnn_reuse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using framework::DataLayout;
|
|
|
|
template <typename T>
|
|
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
|
|
int ndims = axis.size();
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
const T* input_data = input->data<T>();
|
|
|
|
if (ndims == 1) {
|
|
output->ShareDataWith(*input);
|
|
return;
|
|
}
|
|
|
|
std::vector<int> nchw_tz = paddle::framework::vectorize2int(input->dims());
|
|
|
|
const std::string key = platform::TransposeMKLDNNHandler::GetHash(
|
|
nchw_tz, axis, ctx.op().Output("Out"));
|
|
|
|
platform::TransposeMKLDNNHandler handler(nchw_tz, axis, dev_ctx,
|
|
mkldnn_engine, key);
|
|
|
|
auto transpose_src_memory_p = handler.AcquireSrcMemory(
|
|
input->format(), platform::to_void_cast<T>(input_data));
|
|
auto transpose_dst_memory_p =
|
|
handler.AcquireDstMemory(output, ctx.GetPlace());
|
|
auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
|
|
transpose_src_memory_p);
|
|
|
|
std::vector<mkldnn::primitive> pipeline;
|
|
pipeline.push_back(*transpose_p);
|
|
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
auto* out_grad =
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
if (!x_grad) return;
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
|
|
std::vector<int> reversed_axis(axis);
|
|
int ndims = axis.size();
|
|
if (ndims == 1) {
|
|
x_grad->ShareDataWith(*out_grad);
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < axis.size(); i++) {
|
|
reversed_axis[axis[i]] = i;
|
|
}
|
|
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
std::vector<int> nchw_tz =
|
|
paddle::framework::vectorize2int(out_grad->dims());
|
|
|
|
const std::string key = platform::TransposeMKLDNNHandler::GetHash(
|
|
nchw_tz, axis, ctx.op().Output(framework::GradVarName("X")));
|
|
|
|
platform::TransposeMKLDNNHandler handler(nchw_tz, reversed_axis, dev_ctx,
|
|
mkldnn_engine, key);
|
|
|
|
auto transpose_src_memory_p = handler.AcquireSrcMemory(
|
|
out_grad->format(), platform::to_void_cast<T>(out_grad_data));
|
|
auto transpose_dst_memory_p =
|
|
handler.AcquireDstMemory(x_grad, ctx.GetPlace());
|
|
auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
|
|
transpose_src_memory_p);
|
|
|
|
std::vector<mkldnn::primitive> pipeline;
|
|
pipeline.push_back(*transpose_p);
|
|
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(transpose2, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::TransposeMKLDNNOpKernel<float>);
|
|
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::TransposeMKLDNNOpKernel<float>);
|
|
|
|
REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::TransposeMKLDNNGradOpKernel<float>);
|
|
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::TransposeMKLDNNGradOpKernel<float>);
|