You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
8.0 KiB
229 lines
8.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""VGG16 benchmark in Fluid"""
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
import time
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import argparse
|
|
import functools
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument(
|
|
'--batch_size', type=int, default=128, help="Batch size for training.")
|
|
parser.add_argument(
|
|
'--skip_batch_num',
|
|
type=int,
|
|
default=5,
|
|
help='The first num of minibatch num to skip, for better performance test')
|
|
parser.add_argument(
|
|
'--iterations', type=int, default=80, help='The number of minibatches.')
|
|
parser.add_argument(
|
|
'--learning_rate',
|
|
type=float,
|
|
default=1e-3,
|
|
help="Learning rate for training.")
|
|
parser.add_argument('--pass_num', type=int, default=50, help="No. of passes.")
|
|
parser.add_argument(
|
|
'--device',
|
|
type=str,
|
|
default='GPU',
|
|
choices=['CPU', 'GPU'],
|
|
help="The device type.")
|
|
parser.add_argument(
|
|
'--data_format',
|
|
type=str,
|
|
default='NCHW',
|
|
choices=['NCHW', 'NHWC'],
|
|
help='The data order, now only support NCHW.')
|
|
parser.add_argument(
|
|
'--data_set',
|
|
type=str,
|
|
default='cifar10',
|
|
choices=['cifar10', 'flowers'],
|
|
help='Optional dataset for benchmark.')
|
|
parser.add_argument(
|
|
'--with_test',
|
|
action='store_true',
|
|
help='If set, test the testset during training.')
|
|
args = parser.parse_args()
|
|
|
|
|
|
def vgg16_bn_drop(input):
|
|
def conv_block(input, num_filter, groups, dropouts):
|
|
return fluid.nets.img_conv_group(
|
|
input=input,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
conv_num_filter=[num_filter] * groups,
|
|
conv_filter_size=3,
|
|
conv_act='relu',
|
|
conv_with_batchnorm=True,
|
|
conv_batchnorm_drop_rate=dropouts,
|
|
pool_type='max')
|
|
|
|
conv1 = conv_block(input, 64, 2, [0.3, 0])
|
|
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
|
|
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
|
|
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
|
|
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
|
|
|
|
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
|
|
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
|
|
bn = fluid.layers.batch_norm(input=fc1, act='relu')
|
|
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
|
|
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
|
|
return fc2
|
|
|
|
|
|
def main():
|
|
if args.data_set == "cifar10":
|
|
classdim = 10
|
|
if args.data_format == 'NCHW':
|
|
data_shape = [3, 32, 32]
|
|
else:
|
|
data_shape = [32, 32, 3]
|
|
else:
|
|
classdim = 102
|
|
if args.data_format == 'NCHW':
|
|
data_shape = [3, 224, 224]
|
|
else:
|
|
data_shape = [224, 224, 3]
|
|
|
|
# Input data
|
|
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
# Train program
|
|
net = vgg16_bn_drop(images)
|
|
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
# Evaluator
|
|
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size_tensor)
|
|
|
|
# inference program
|
|
inference_program = fluid.default_main_program().clone()
|
|
with fluid.program_guard(inference_program):
|
|
inference_program = fluid.io.get_inference_program(
|
|
target_vars=[batch_acc, batch_size_tensor])
|
|
|
|
# Optimization
|
|
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
|
|
opts = optimizer.minimize(avg_cost)
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
# Initialize executor
|
|
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
|
|
# Parameter initialization
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
# data reader
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.cifar.train10()
|
|
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
|
|
buf_size=5120),
|
|
batch_size=args.batch_size)
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.cifar.test10()
|
|
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
|
|
batch_size=args.batch_size)
|
|
|
|
# test
|
|
def test(exe):
|
|
test_accuracy = fluid.average.WeightedAverage()
|
|
for batch_id, data in enumerate(test_reader()):
|
|
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
|
|
data)).astype("float32")
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
y_data = y_data.reshape([-1, 1])
|
|
|
|
acc, weight = exe.run(inference_program,
|
|
feed={"pixel": img_data,
|
|
"label": y_data},
|
|
fetch_list=[batch_acc, batch_size_tensor])
|
|
test_accuracy.add(value=acc, weight=weight)
|
|
return test_accuracy.eval()
|
|
|
|
iters, num_samples, start_time = 0, 0, time.time()
|
|
accuracy = fluid.average.WeightedAverage()
|
|
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
|
|
for pass_id in range(args.pass_num):
|
|
accuracy.reset()
|
|
train_accs = []
|
|
train_losses = []
|
|
for batch_id, data in enumerate(train_reader()):
|
|
if iters == args.skip_batch_num:
|
|
start_time = time.time()
|
|
num_samples = 0
|
|
if iters == args.iterations:
|
|
break
|
|
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
|
|
data)).astype("float32")
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
y_data = y_data.reshape([-1, 1])
|
|
|
|
loss, acc, weight = train_exe.run(
|
|
feed={"pixel": img_data,
|
|
"label": y_data},
|
|
fetch_list=[
|
|
avg_cost.name, batch_acc.name, batch_size_tensor.name
|
|
])
|
|
accuracy.add(value=np.array(np.mean(acc)), weight=np.mean(weight))
|
|
iters += 1
|
|
num_samples += len(y_data)
|
|
loss = np.mean(np.array(loss))
|
|
acc = np.mean(np.array(acc))
|
|
print(
|
|
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
|
|
(pass_id, iters, loss, acc)
|
|
) # The accuracy is the accumulation of batches, but not the current batch.
|
|
|
|
# pass_train_acc = accuracy.eval()
|
|
train_losses.append(loss)
|
|
train_accs.append(acc)
|
|
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
|
|
(pass_id, np.mean(train_losses), np.mean(train_accs)))
|
|
train_elapsed = time.time() - start_time
|
|
examples_per_sec = num_samples / train_elapsed
|
|
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
|
|
(num_samples, train_elapsed, examples_per_sec))
|
|
# evaluation
|
|
if args.with_test:
|
|
pass_test_acc = test(exe)
|
|
exit(0)
|
|
|
|
|
|
def print_arguments():
|
|
print('----------- vgg Configuration Arguments -----------')
|
|
for arg, value in sorted(vars(args).iteritems()):
|
|
print('%s: %s' % (arg, value))
|
|
print('------------------------------------------------')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print_arguments()
|
|
main()
|