You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.2 KiB
156 lines
5.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "ScaleSubRegionOp.h"
|
|
#include "paddle/function/TensorShape.h"
|
|
|
|
namespace paddle {
|
|
|
|
template <>
|
|
void ScaleSubRegion<DEVICE_TYPE_CPU>(real* outputs,
|
|
const real* inputs,
|
|
const real* indices,
|
|
const TensorShape shape,
|
|
const FuncConfig& conf) {
|
|
real value = conf.get<real>("value");
|
|
|
|
int number = shape[0];
|
|
int channel = shape[1];
|
|
int height = shape[2];
|
|
int width = shape[3];
|
|
|
|
memcpy(outputs, inputs, number * channel * height * width * sizeof(real));
|
|
|
|
for (int n = 0; n < number; ++n) {
|
|
// indices start from 1
|
|
int offset = n * 6;
|
|
for (int c = indices[offset] - 1; c < indices[offset + 1]; ++c) {
|
|
for (int h = indices[offset + 2] - 1; h < indices[offset + 3]; ++h) {
|
|
for (int w = indices[offset + 4] - 1; w < indices[offset + 5]; ++w) {
|
|
int idx = ((n * channel + c) * height + h) * width + w;
|
|
outputs[idx] *= value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void ScaleSubRegionGrad<DEVICE_TYPE_CPU>(const real* inGrad,
|
|
real* outGrad,
|
|
const real* indices,
|
|
const TensorShape shape,
|
|
const FuncConfig& conf) {
|
|
real value = conf.get<real>("value");
|
|
|
|
int number = shape[0];
|
|
int channel = shape[1];
|
|
int height = shape[2];
|
|
int width = shape[3];
|
|
|
|
for (int n = 0; n < number; ++n) {
|
|
for (int c = 0; c < channel; ++c) {
|
|
for (int h = 0; h < height; ++h) {
|
|
for (int w = 0; w < width; ++w) {
|
|
int idx = ((n * channel + c) * height + h) * width + w;
|
|
int offset = n * 6;
|
|
if (c >= (indices[offset] - 1) && c <= (indices[offset + 1] - 1) &&
|
|
h >= (indices[offset + 2] - 1) &&
|
|
h <= (indices[offset + 3] - 1) &&
|
|
w >= (indices[offset + 4] - 1) &&
|
|
w <= (indices[offset + 5] - 1)) {
|
|
outGrad[idx] += inGrad[idx] * value;
|
|
} else {
|
|
outGrad[idx] += inGrad[idx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief For each instance, ScaleSubRegion can be used to multiply a value to
|
|
* a specified sub continuous region. By providing start index and end
|
|
* index for C/H/W, you can specify the location and shape of the region.
|
|
*
|
|
* Argument in this Function:
|
|
* \param inputs A 4-D tensor with shape [N, C, H, W], only one input.
|
|
* \param indices A 2-D tensor with shape [N, 6], indicates the sub region.
|
|
* \param outputs A 4-D tensor with same shape as inputs, output value.
|
|
*/
|
|
template <DeviceType Device>
|
|
class ScaleSubRegionFunc : public FunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override { conf_ = config; }
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(2UL, inputs.size());
|
|
CHECK_EQ(1UL, outputs.size());
|
|
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
|
|
|
TensorShape shape = inputs[0].shape();
|
|
|
|
ScaleSubRegion<Device>(outputs[0].data<real>(),
|
|
inputs[0].data<real>(),
|
|
inputs[1].data<real>(),
|
|
shape,
|
|
conf_);
|
|
}
|
|
|
|
private:
|
|
FuncConfig conf_;
|
|
};
|
|
|
|
/**
|
|
* \brief The backward propagation of ScaleSubRegion Function.
|
|
*
|
|
* Argument in this Function:
|
|
* \param inputs A 4-D tensor with shape [N, C, H, W], output gradient.
|
|
* \param indices A 2-D tensor with shape [N, 6], indicates the sub region.
|
|
* \param outputs A 4-D tensor with shape [N, C, H, W], gradient of input value.
|
|
*/
|
|
|
|
template <DeviceType Device>
|
|
class ScaleSubRegionGradFunc : public FunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override { conf_ = config; }
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(2UL, inputs.size());
|
|
CHECK_EQ(1UL, outputs.size());
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
|
|
TensorShape shape = inputs[0].shape();
|
|
|
|
ScaleSubRegionGrad<Device>(inputs[0].data<real>(),
|
|
outputs[0].data<real>(),
|
|
inputs[1].data<real>(),
|
|
shape,
|
|
conf_);
|
|
}
|
|
|
|
private:
|
|
FuncConfig conf_;
|
|
};
|
|
|
|
REGISTER_TYPED_FUNC(ScaleSubRegion, CPU, ScaleSubRegionFunc);
|
|
REGISTER_TYPED_FUNC(ScaleSubRegionGrad, CPU, ScaleSubRegionGradFunc);
|
|
#ifdef PADDLE_WITH_CUDA
|
|
REGISTER_TYPED_FUNC(ScaleSubRegion, GPU, ScaleSubRegionFunc);
|
|
REGISTER_TYPED_FUNC(ScaleSubRegionGrad, GPU, ScaleSubRegionGradFunc);
|
|
#endif
|
|
|
|
} // namespace paddle
|