You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.5 KiB
164 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/memory/memcpy.h"
|
|
#include "paddle/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
template <typename T>
|
|
inline void Tensor::check_memory_size() const {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
|
|
PADDLE_ENFORCE_GE(
|
|
holder_->size(), numel() * sizeof(T) + offset_,
|
|
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
|
|
"first to re-allocate memory.\n"
|
|
"or maybe the required data-type mismatches the data already stored.");
|
|
}
|
|
|
|
template <typename T>
|
|
inline const T* Tensor::data() const {
|
|
check_memory_size<T>();
|
|
return reinterpret_cast<const T*>(
|
|
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T* Tensor::data() {
|
|
check_memory_size<T>();
|
|
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
|
|
offset_);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
|
|
static_assert(std::is_pod<T>::value, "T must be POD");
|
|
Resize(dims);
|
|
return mutable_data<T>(place);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T* Tensor::mutable_data(platform::Place place) {
|
|
static_assert(std::is_pod<T>::value, "T must be POD");
|
|
PADDLE_ENFORCE_GT(numel(), 0,
|
|
"Tensor's numel must be larger than zero to call "
|
|
"Tensor::mutable_data. Call Tensor::set_dim first.");
|
|
/* some versions of boost::variant don't have operator!= */
|
|
int64_t size = numel() * sizeof(T);
|
|
if (holder_ == nullptr || !(holder_->place() == place) ||
|
|
holder_->size() < size + offset_) {
|
|
if (platform::is_cpu_place(place)) {
|
|
holder_.reset(new PlaceholderImpl<T, platform::CPUPlace>(
|
|
boost::get<platform::CPUPlace>(place), size));
|
|
} else if (platform::is_gpu_place(place)) {
|
|
#ifdef PADDLE_ONLY_CPU
|
|
PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
|
|
}
|
|
#else
|
|
holder_.reset(new PlaceholderImpl<T, platform::GPUPlace>(
|
|
boost::get<platform::GPUPlace>(place), size));
|
|
}
|
|
#endif
|
|
offset_ = 0;
|
|
}
|
|
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
|
|
offset_);
|
|
}
|
|
|
|
template <typename T>
|
|
inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
|
|
src.check_memory_size<T>();
|
|
*this = src;
|
|
return *this;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void Tensor::CopyFrom(const Tensor& src,
|
|
const platform::Place& dst_place) {
|
|
src.check_memory_size<T>();
|
|
Resize(src.dims());
|
|
|
|
auto src_place = src.holder_->place();
|
|
auto src_ptr = static_cast<const void*>(src.data<T>());
|
|
|
|
auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));
|
|
|
|
auto size = src.numel() * sizeof(T);
|
|
|
|
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
|
|
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
|
|
boost::get<platform::CPUPlace>(src_place), src_ptr, size);
|
|
}
|
|
#ifndef PADDLE_ONLY_CPU
|
|
else if (platform::is_gpu_place(src_place) &&
|
|
platform::is_cpu_place(dst_place)) {
|
|
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
|
|
boost::get<platform::GPUPlace>(src_place), src_ptr, size, 0);
|
|
} else if (platform::is_cpu_place(src_place) &&
|
|
platform::is_gpu_place(dst_place)) {
|
|
memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr,
|
|
boost::get<platform::CPUPlace>(src_place), src_ptr, size, 0);
|
|
} else if (platform::is_gpu_place(src_place) &&
|
|
platform::is_gpu_place(dst_place)) {
|
|
memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr,
|
|
boost::get<platform::GPUPlace>(src_place), src_ptr, size, 0);
|
|
}
|
|
PADDLE_ENFORCE(cudaStreamSynchronize(0),
|
|
"cudaStreamSynchronize failed in Tensor CopyFrom");
|
|
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
|
|
check_memory_size<T>();
|
|
PADDLE_ENFORCE_GE(begin_idx, 0, "Slice begin index is less than zero.");
|
|
PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound.");
|
|
PADDLE_ENFORCE_LT(begin_idx, end_idx,
|
|
"Begin index must be less than end index.");
|
|
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
|
|
size_t base = numel() / dims_[0];
|
|
Tensor dst;
|
|
dst.holder_ = holder_;
|
|
DDim dst_dims = dims_;
|
|
dst_dims[0] = end_idx - begin_idx;
|
|
dst.Resize(dst_dims);
|
|
dst.offset_ = offset_ + begin_idx * base * sizeof(T);
|
|
return dst;
|
|
}
|
|
|
|
inline Tensor& Tensor::Resize(const DDim& dims) {
|
|
dims_ = dims;
|
|
numel_ = product(dims_);
|
|
return *this;
|
|
}
|
|
|
|
inline const DDim& Tensor::dims() const { return dims_; }
|
|
|
|
inline int64_t Tensor::numel() const { return numel_; }
|
|
|
|
template <typename T>
|
|
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
|
|
Tensor res;
|
|
res.ShareDataWith<T>(src);
|
|
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
|
|
return res;
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|