You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/benchmark/tensorflow/rnn/rnn.py

224 lines
8.1 KiB

#!/usr/bin/env python
from six.moves import xrange # pylint: disable=redefined-builtin
import math
import time
import numpy as np
from datetime import datetime
import reader
import tensorflow as tf
from tensorflow.python.ops import rnn
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
tf.app.flags.DEFINE_integer('num_layers', 1, """Number of batches to run.""")
tf.app.flags.DEFINE_integer('max_len', 100, """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('forward_only', False,
"""Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
"""Only run the forward-forward pass.""")
tf.app.flags.DEFINE_integer('hidden_size', 128, """Number of batches to run.""")
tf.app.flags.DEFINE_integer('emb_size', 128, """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
VOCAB_SIZE = 30000
NUM_CLASS = 2
def get_feed_dict(x_data, y_data=None):
feed_dict = {}
if y_data is not None:
feed_dict[y_input] = y_data
for i in xrange(x_data.shape[0]):
feed_dict[x_input[i]] = x_data[i, :, :]
return feed_dict
def get_incoming_shape(incoming):
""" Returns the incoming data shape """
if isinstance(incoming, tf.Tensor):
return incoming.get_shape().as_list()
elif type(incoming) in [np.array, list, tuple]:
return np.shape(incoming)
else:
raise Exception("Invalid incoming layer.")
# Note input * W is done in LSTMCell,
# which is different from PaddlePaddle
def single_lstm(name,
incoming,
n_units,
use_peepholes=True,
return_seq=False,
return_state=False):
with tf.name_scope(name) as scope:
cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
output, _cell_state = rnn.rnn(cell, incoming, dtype=tf.float32)
out = output if return_seq else output[-1]
return (out, _cell_state) if return_state else out
def lstm(name,
incoming,
n_units,
use_peepholes=True,
return_seq=False,
return_state=False,
num_layers=1):
with tf.name_scope(name) as scope:
lstm_cell = tf.nn.rnn_cell.LSTMCell(
n_units, use_peepholes=use_peepholes)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
initial_state = cell.zero_state(FLAGS.batch_size, dtype=tf.float32)
if not isinstance(incoming, list):
# if the input is embeding, the Tensor shape : [None, time_step, emb_size]
incoming = [
tf.squeeze(input_, [1])
for input_ in tf.split(1, FLAGS.max_len, incoming)
]
outputs, state = tf.nn.rnn(cell,
incoming,
initial_state=initial_state,
dtype=tf.float32)
out = outputs if return_seq else outputs[-1]
return (out, _cell_state) if return_state else out
def embedding(name, incoming, vocab_size, emb_size):
with tf.name_scope(name) as scope:
#with tf.device("/cpu:0"):
embedding = tf.get_variable(
name + '_emb', [vocab_size, emb_size], dtype=tf.float32)
out = tf.nn.embedding_lookup(embedding, incoming)
return out
def fc(name, inpOp, nIn, nOut, act=True):
with tf.name_scope(name) as scope:
kernel = tf.get_variable(
name + '_w', [nIn, nOut],
initializer=tf.truncated_normal_initializer(
stddev=0.01, dtype=tf.float32),
dtype=tf.float32)
biases = tf.get_variable(
name + '_b', [nOut],
initializer=tf.constant_initializer(
value=0.0, dtype=tf.float32),
dtype=tf.float32,
trainable=True)
net = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
tf.matmul(inpOp, kernel) + biases
return net
def inference(seq):
net = embedding('emb', seq, VOCAB_SIZE, FLAGS.emb_size)
print "emb:", get_incoming_shape(net)
net = lstm('lstm', net, FLAGS.hidden_size, num_layers=FLAGS.num_layers)
print "lstm:", get_incoming_shape(net)
net = fc('fc1', net, FLAGS.hidden_size, 2)
return net
def loss(logits, labels):
# one label index for one sample
labels = tf.cast(labels, tf.float32)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits, labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name='total_loss')
def time_tensorflow_run(session, target, x_input, y_input, info_string):
num_steps_burn_in = 50
total_duration = 0.0
total_duration_squared = 0.0
if not isinstance(target, list):
target = [target]
target_op = tf.group(*target)
train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)
for i in xrange(FLAGS.num_batches + num_steps_burn_in):
start_time = time.time()
data, label = train_dataset.next_batch(FLAGS.batch_size)
_ = session.run(target_op, feed_dict={x_input: data, y_input: label})
duration = time.time() - start_time
if i > num_steps_burn_in:
if not i % 10:
print('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / FLAGS.num_batches
vr = total_duration_squared / FLAGS.num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, FLAGS.num_batches, mn, sd))
def run_benchmark():
with tf.Graph().as_default():
global_step = 0
with tf.device('/cpu:0'):
global_step = tf.Variable(0, trainable=False)
with tf.device('/gpu:0'):
#x_input = tf.placeholder(tf.int32, [None, FLAGS.max_len], name="x_input")
#y_input = tf.placeholder(tf.int32, [None, NUM_CLASS], name="y_input")
x_input = tf.placeholder(
tf.int32, [FLAGS.batch_size, FLAGS.max_len], name="x_input")
y_input = tf.placeholder(
tf.int32, [FLAGS.batch_size, NUM_CLASS], name="y_input")
# Generate some dummy sequnce.
last_layer = inference(x_input)
objective = loss(last_layer, y_input)
opt = tf.train.AdamOptimizer(0.001)
grads = opt.compute_gradients(objective)
apply_gradient_op = opt.apply_gradients(
grads, global_step=global_step)
init = tf.initialize_all_variables()
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
run_forward = True
run_forward_backward = True
if FLAGS.forward_only and FLAGS.forward_backward_only:
raise ValueError("Cannot specify --forward_only and "
"--forward_backward_only at the same time.")
if FLAGS.forward_only:
run_forward_backward = False
elif FLAGS.forward_backward_only:
run_forward = False
if run_forward:
time_tensorflow_run(sess, last_layer, x_input, y_input,
"Forward")
if run_forward_backward:
with tf.control_dependencies([apply_gradient_op]):
train_op = tf.no_op(name='train')
time_tensorflow_run(sess, [train_op, objective], x_input,
y_input, "Forward-backward")
def main(_):
run_benchmark()
if __name__ == '__main__':
tf.app.run()