You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
2.7 KiB
96 lines
2.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "GradientMachine.h"
|
|
|
|
#include <fstream>
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
#include "GradientMachineMode.h"
|
|
#include "MultiGradientMachine.h"
|
|
#include "MultiNetwork.h"
|
|
#include "NeuralNetwork.h"
|
|
#include "ParallelNeuralNetwork.h"
|
|
#include "hl_gpu.h"
|
|
|
|
namespace paddle {
|
|
|
|
GradientMachine* GradientMachine::create(
|
|
const ModelConfig& config,
|
|
int mode,
|
|
const std::vector<ParameterType>& parameterTypes) {
|
|
if (auto gm = IGradientMachineMode::tryCreateGradientMachine(mode, config)) {
|
|
return gm;
|
|
}
|
|
if (FLAGS_trainer_count > 1) {
|
|
return new MultiGradientMachine(config, FLAGS_use_gpu);
|
|
}
|
|
if (FLAGS_trainer_count == 1) { // single
|
|
NeuralNetwork* nn;
|
|
if (config.type() == "multi_nn") {
|
|
/* multi submodel calculate, thread(s) will be initialized inside */
|
|
nn = new MultiNetwork("root");
|
|
} else if (FLAGS_parallel_nn) {
|
|
/* multi threads calculate */
|
|
nn = new ParallelNeuralNetwork();
|
|
} else {
|
|
/* single thread calculate */
|
|
nn = NeuralNetwork::create(config);
|
|
}
|
|
ParamInitCallback testParamInitCb = [](int paramId, Parameter* para) {
|
|
para->enableType(PARAMETER_VALUE);
|
|
};
|
|
nn->init(
|
|
config, mode == kTesting ? testParamInitCb : nullptr, parameterTypes);
|
|
return nn;
|
|
}
|
|
LOG(FATAL) << "Unknown model type: " << config.type();
|
|
return nullptr;
|
|
}
|
|
|
|
void GradientMachine::saveParameters(const std::string& dir) const {
|
|
LOG(INFO) << "Saving parameters to " << dir;
|
|
|
|
for (auto& para : parameters_) {
|
|
std::string filename = dir + "/" + para->getName();
|
|
if (para->isFullSize()) {
|
|
para->save(filename);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GradientMachine::loadParameters(const std::string& dir) {
|
|
LOG(INFO) << "Loading parameters from " << dir;
|
|
|
|
for (auto& para : parameters_) {
|
|
std::string filename = dir + "/" + para->getName();
|
|
if (para->isFullSize()) {
|
|
para->load(filename);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GradientMachine::randParameters() {
|
|
LOG(INFO) << "Initing parameters..";
|
|
|
|
for (auto& para : parameters_) {
|
|
if (para->isFullSize()) {
|
|
para->randomize();
|
|
}
|
|
}
|
|
LOG(INFO) << "Init parameters done.";
|
|
}
|
|
|
|
} // namespace paddle
|