You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
6.5 KiB
193 lines
6.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "ExpandConvLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
DEFINE_bool(use_nnpack,
|
|
false,
|
|
"Whether to use nnpack for convolution calculation.");
|
|
|
|
namespace paddle {
|
|
|
|
/*
|
|
* The calculation of the exconvt(convolution transpose (deconv) operation)
|
|
* is a swap of forward and backward of the calculation of exconv.
|
|
* */
|
|
REGISTER_LAYER(exconv, ExpandConvLayer);
|
|
REGISTER_LAYER(exconvt, ExpandConvLayer);
|
|
|
|
bool ExpandConvLayer::init(const LayerMap &layerMap,
|
|
const ParameterMap ¶meterMap) {
|
|
/* Initialize the basic convolutional parent class */
|
|
ExpandConvBaseLayer::init(layerMap, parameterMap);
|
|
|
|
size_t numInputs = config_.inputs_size();
|
|
inputShape_.resize(numInputs);
|
|
filterShape_.resize(numInputs);
|
|
outputShape_.resize(numInputs);
|
|
|
|
std::string convType;
|
|
std::string convGradInputType;
|
|
std::string convGradFilterType;
|
|
|
|
for (int i = 0; i < config_.inputs_size(); i++) {
|
|
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
|
|
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
|
|
|
|
if (useGpu_ && (size_t)groups_[i] == (size_t)channels_[i] && !isDeconv_) {
|
|
convType = "DepthwiseConv";
|
|
convGradInputType = "DepthwiseConvGradInput";
|
|
convGradFilterType = "DepthwiseConvGradFilter";
|
|
} else {
|
|
convType = "GemmConv";
|
|
convGradInputType = "GemmConvGradInput";
|
|
convGradFilterType = "GemmConvGradFilter";
|
|
}
|
|
|
|
if (FLAGS_use_nnpack && !isDeconv_) {
|
|
createFunction(forward_,
|
|
"NNPACKConv",
|
|
FuncConfig()
|
|
.set("paddings", paddings)
|
|
.set("strides", strides)
|
|
.set("groups", (size_t)groups_[i])
|
|
.set("algo", std::string("auto")));
|
|
} else {
|
|
createFunction(forward_,
|
|
!isDeconv_ ? convType : convGradInputType,
|
|
FuncConfig()
|
|
.set("paddings", paddings)
|
|
.set("strides", strides)
|
|
.set("groups", (size_t)groups_[i]));
|
|
|
|
createFunction(backward_,
|
|
!isDeconv_ ? convGradInputType : convType,
|
|
FuncConfig()
|
|
.set("paddings", paddings)
|
|
.set("strides", strides)
|
|
.set("groups", (size_t)groups_[i]));
|
|
|
|
createFunction(backward_,
|
|
convGradFilterType,
|
|
FuncConfig()
|
|
.set("paddings", paddings)
|
|
.set("strides", strides)
|
|
.set("groups", (size_t)groups_[i]));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// i is the index of input layers
|
|
#define BACKWARD_INPUT(i, inputs, outputs) \
|
|
backward_[2 * i]->calc(inputs, outputs)
|
|
#define BACKWARD_FILTER(i, inputs, outputs) \
|
|
backward_[2 * i + 1]->calc(inputs, outputs)
|
|
|
|
void ExpandConvLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
|
resetOutput(batchSize, getOutputSize());
|
|
|
|
// Calculate the shape of the input, output, and filter.
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
inputShape_[i] = TensorShape({(size_t)batchSize,
|
|
(size_t)channels_[i],
|
|
(size_t)imgSizeH_[i],
|
|
(size_t)imgSizeW_[i]});
|
|
filterShape_[i] =
|
|
TensorShape({(size_t)groups_[i],
|
|
!isDeconv_ ? (size_t)numFilters_ / groups_[i]
|
|
: (size_t)channels_[i] / groups_[i],
|
|
!isDeconv_ ? (size_t)channels_[i] / groups_[i]
|
|
: (size_t)numFilters_ / groups_[i],
|
|
(size_t)filterSizeY_[i],
|
|
(size_t)filterSize_[i]});
|
|
outputShape_[i] = TensorShape({(size_t)batchSize,
|
|
(size_t)numFilters_,
|
|
(size_t)outputH_[i],
|
|
(size_t)outputW_[i]});
|
|
}
|
|
|
|
// Calculate the output value.
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getInputValue(i), inputShape_[i]);
|
|
inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
|
|
outputs.addArg(*getOutputValue(),
|
|
outputShape_[i],
|
|
!isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
|
|
|
|
forward_[i]->calc(inputs, outputs);
|
|
}
|
|
|
|
/* add the bias-vector */
|
|
if (biases_.get()) {
|
|
if (sharedBiases_) {
|
|
addSharedBias();
|
|
} else {
|
|
addUnsharedBias();
|
|
}
|
|
}
|
|
|
|
/* activation */
|
|
forwardActivation();
|
|
}
|
|
|
|
void ExpandConvLayer::backward(const UpdateCallback &callback) {
|
|
backwardActivation();
|
|
|
|
MatrixPtr outGrad = getOutputGrad();
|
|
if (biases_ && biases_->getWGrad()) {
|
|
bpropBiases(outGrad);
|
|
/* Increasing the number of gradient */
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
// Calculate the input grad and filter grad.
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
if (getInputGrad(i)) {
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getOutputGrad(), outputShape_[i]);
|
|
inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
|
|
outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
|
|
BACKWARD_INPUT(i, inputs, outputs);
|
|
}
|
|
|
|
if (weights_[i]->getWGrad()) {
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
if (!isDeconv_) {
|
|
inputs.addArg(*getOutputGrad(), outputShape_[i]);
|
|
inputs.addArg(*getInputValue(i), inputShape_[i]);
|
|
} else {
|
|
inputs.addArg(*getInputValue(i), inputShape_[i]);
|
|
inputs.addArg(*getOutputGrad(), outputShape_[i]);
|
|
}
|
|
outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
|
|
BACKWARD_FILTER(i, inputs, outputs);
|
|
|
|
/* Increasing the number of gradient */
|
|
weights_[i]->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|