60 lines
1.7 KiB
60 lines
1.7 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
|
|
import numpy as np
|
|
from py_paddle import swig_paddle
|
|
|
|
|
|
def doubleEqual(a, b):
|
|
return abs(a - b) < 1e-5
|
|
|
|
|
|
def __readFromFile():
|
|
for i in xrange(10002):
|
|
label = np.random.randint(0, 9)
|
|
sample = np.random.rand(784) + 0.1 * label
|
|
yield sample, label
|
|
|
|
|
|
def loadMNISTTrainData(batch_size=100):
|
|
if not hasattr(loadMNISTTrainData, "gen"):
|
|
generator = __readFromFile()
|
|
loadMNISTTrainData.gen = generator
|
|
else:
|
|
generator = loadMNISTTrainData.gen
|
|
args = swig_paddle.Arguments.createArguments(2)
|
|
# batch_size = 100
|
|
|
|
dense_slot = []
|
|
id_slot = []
|
|
atEnd = False
|
|
|
|
for _ in xrange(batch_size):
|
|
try:
|
|
result = generator.next()
|
|
dense_slot.extend(result[0])
|
|
id_slot.append(result[1])
|
|
except StopIteration:
|
|
atEnd = True
|
|
del loadMNISTTrainData.gen
|
|
break
|
|
|
|
dense_slot = swig_paddle.Matrix.createDense(dense_slot, batch_size, 784)
|
|
id_slot = swig_paddle.IVector.create(id_slot)
|
|
args.setSlotValue(0, dense_slot)
|
|
args.setSlotIds(1, id_slot)
|
|
return args, atEnd
|