You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
5.8 KiB
175 lines
5.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
|
#include <gflags/gflags.h>
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
|
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
|
#include "paddle/fluid/inference/api/analysis_predictor.h"
|
|
#include "paddle/fluid/inference/api/helper.h"
|
|
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
|
|
|
|
DEFINE_string(infer_model, "", "model path for LAC");
|
|
DEFINE_string(infer_data, "", "data file for LAC");
|
|
DEFINE_int32(batch_size, 1, "batch size.");
|
|
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
struct Record {
|
|
std::vector<float> data;
|
|
std::vector<int32_t> shape;
|
|
};
|
|
|
|
Record ProcessALine(const std::string &line) {
|
|
VLOG(3) << "process a line";
|
|
std::vector<std::string> columns;
|
|
split(line, '\t', &columns);
|
|
CHECK_EQ(columns.size(), 2UL)
|
|
<< "data format error, should be <data>\t<shape>";
|
|
|
|
Record record;
|
|
std::vector<std::string> data_strs;
|
|
split(columns[0], ' ', &data_strs);
|
|
for (auto &d : data_strs) {
|
|
record.data.push_back(std::stof(d));
|
|
}
|
|
|
|
std::vector<std::string> shape_strs;
|
|
split(columns[1], ' ', &shape_strs);
|
|
for (auto &s : shape_strs) {
|
|
record.shape.push_back(std::stoi(s));
|
|
}
|
|
VLOG(3) << "data size " << record.data.size();
|
|
VLOG(3) << "data shape size " << record.shape.size();
|
|
return record;
|
|
}
|
|
|
|
/*
|
|
* Use the native and analysis fluid engine to inference the demo.
|
|
* ocr, mobilenet and se_resnext50
|
|
*/
|
|
void TestVisualPrediction(bool use_mkldnn) {
|
|
std::unique_ptr<PaddlePredictor> predictor;
|
|
AnalysisConfig cfg;
|
|
cfg.param_file = FLAGS_infer_model + "/__params__";
|
|
cfg.prog_file = FLAGS_infer_model + "/__model__";
|
|
cfg.use_gpu = false;
|
|
cfg._use_mkldnn = use_mkldnn;
|
|
cfg.device = 0;
|
|
cfg.enable_ir_optim = true;
|
|
cfg.ir_passes.push_back("fc_gru_fuse_pass");
|
|
predictor =
|
|
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
|
|
|
|
// Only have single batch of data.
|
|
std::string line;
|
|
std::ifstream file(FLAGS_infer_data);
|
|
std::getline(file, line);
|
|
auto record = ProcessALine(line);
|
|
file.close();
|
|
|
|
// Inference.
|
|
PaddleTensor input;
|
|
input.shape = record.shape;
|
|
input.data =
|
|
PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
|
|
input.dtype = PaddleDType::FLOAT32;
|
|
|
|
std::vector<PaddleTensor> outputs_slots;
|
|
Timer timer;
|
|
timer.tic();
|
|
for (int i = 0; i < FLAGS_repeat; i++) {
|
|
predictor->Run({input}, &outputs_slots);
|
|
}
|
|
PrintTime(/*batch size*/ 1, FLAGS_repeat, /*num threads*/ 1, /*thread id*/ 0,
|
|
timer.toc() / FLAGS_repeat);
|
|
|
|
VLOG(3) << "output.size " << outputs_slots.size();
|
|
|
|
// run native as reference
|
|
NativeConfig config;
|
|
config.param_file = FLAGS_infer_model + "/__params__";
|
|
config.prog_file = FLAGS_infer_model + "/__model__";
|
|
config.use_gpu = false;
|
|
config.device = 0;
|
|
// config.specify_input_name = true;
|
|
auto ref_predictor =
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
std::vector<PaddleTensor> ref_outputs_slots;
|
|
ref_predictor->Run({input}, &ref_outputs_slots);
|
|
EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
|
|
for (size_t i = 0; i < outputs_slots.size(); ++i) {
|
|
auto &ref_out = ref_outputs_slots[i];
|
|
auto &out = outputs_slots[i];
|
|
size_t ref_size =
|
|
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
|
|
[](int a, int b) { return a * b; });
|
|
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
|
[](int a, int b) { return a * b; });
|
|
EXPECT_EQ(size, ref_size);
|
|
EXPECT_EQ(out.dtype, ref_out.dtype);
|
|
switch (out.dtype) {
|
|
case PaddleDType::INT64: {
|
|
int64_t *pdata = static_cast<int64_t *>(out.data.data());
|
|
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
|
|
for (size_t j = 0; j < size; ++j) {
|
|
EXPECT_EQ(pdata_ref[j], pdata[j]);
|
|
}
|
|
break;
|
|
}
|
|
case PaddleDType::FLOAT32: {
|
|
float *pdata = static_cast<float *>(out.data.data());
|
|
float *pdata_ref = static_cast<float *>(ref_out.data.data());
|
|
for (size_t j = 0; j < size; ++j) {
|
|
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// print what are fused
|
|
AnalysisPredictor *analysis_predictor =
|
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
|
.Get<std::unordered_map<std::string, int>>(
|
|
framework::ir::kFuseStatisAttr);
|
|
for (auto &item : fuse_statis) {
|
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
|
}
|
|
int num_ops = 0;
|
|
for (auto &node :
|
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
|
if (node->IsFunction()) {
|
|
++num_ops;
|
|
}
|
|
}
|
|
LOG(INFO) << "has num ops: " << num_ops;
|
|
}
|
|
}
|
|
|
|
TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); }
|
|
TEST(Analyzer_vis, analysis_mkldnn) {
|
|
TestVisualPrediction(/*use_mkldnn*/ true);
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|