You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/tests/test_paramconf_order.py

100 lines
3.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright PaddlePaddle contributors. All Rights Reservedd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import math
import paddle.v2 as paddle
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=5,
param_attr=paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0))
return wordemb
def train():
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
# Every layer takes integer value of range [0, dict_size)
firstword = paddle.layer.data(
name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
name="fifthw", type=paddle.data_type.integer_value(dict_size))
Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
hidden1 = paddle.layer.fc(name="fc1",
input=contextemb,
size=128,
act=paddle.activation.Sigmoid(),
layer_attr=paddle.attr.Extra(drop_rate=0.5),
bias_attr=paddle.attr.Param(learning_rate=2),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(5 * 8),
learning_rate=1,
l2_rate=6e-4))
predictword = paddle.layer.fc(input=hidden1,
size=dict_size,
bias_attr=paddle.attr.Param(learning_rate=2),
act=paddle.activation.Softmax())
return paddle.layer.classification_cost(input=predictword, label=nextword)
class TestParamConfOrder(unittest.TestCase):
def test_param_conf_order(self):
paddle.init()
cost = train()
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.AdaGrad(
learning_rate=3e-3,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost, parameters, adagrad)
for p in trainer.get_topology_proto().parameters:
if p.name == "_fc1.w0":
self.assertEqual(p.decay_rate, 6e-4)
else:
self.assertEqual(p.decay_rate, 8e-4)
if __name__ == '__main__':
unittest.main()