You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/tester_helper.h

1085 lines
39 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <thread> // NOLINT
#include <unordered_map>
#include <utility>
#include <vector>
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
#include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/inference/utils/benchmark.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(model_name, "", "model name");
DEFINE_string(infer_model, "", "model path");
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_string(refer_result, "", "reference result for comparison");
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_bool(ernie_large, false, "Test ernie large");
DEFINE_bool(with_accuracy_layer, true,
"Calculate the accuracy while label is in the input");
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
DEFINE_bool(enable_bf16, true, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, true, "Enable INT8 type prediction");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
DEFINE_bool(use_analysis, true,
"Running the inference program in analysis mode.");
DEFINE_bool(record_benchmark, false,
"Record benchmark after profiling the model");
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
DEFINE_bool(warmup, false,
"Use warmup to calculate elapsed_time more accurately. "
"To reduce CI time, it sets false in default.");
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
namespace paddle {
namespace inference {
using paddle::framework::proto::VarType;
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();
template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
return paddle::PaddleDType::INT64;
}
template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
return paddle::PaddleDType::FLOAT32;
}
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
const auto *analysis_config =
reinterpret_cast<const AnalysisConfig *>(config);
if (use_analysis) {
LOG(INFO) << *analysis_config;
return;
}
LOG(INFO) << analysis_config->ToNativeConfig();
}
void CheckError(float data_ref, float data) {
if (std::abs(data_ref) > 1) {
CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
} else {
CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
}
}
class Barrier {
public:
explicit Barrier(std::size_t count) : _count(count) {}
void Wait() {
std::unique_lock<std::mutex> lock(_mutex);
if (--_count) {
_cv.wait(lock, [this] { return _count == 0; });
} else {
_cv.notify_all();
}
}
private:
std::mutex _mutex;
std::condition_variable _cv;
std::size_t _count;
};
template <typename T>
class TensorReader {
public:
TensorReader(std::ifstream &file, size_t beginning_offset,
std::vector<int> shape, std::string name)
: file_(file), position_(beginning_offset), shape_(shape), name_(name) {
numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
std::multiplies<size_t>());
}
PaddleTensor NextBatch() {
PaddleTensor tensor;
tensor.name = name_;
tensor.shape = shape_;
tensor.dtype = GetPaddleDType<T>();
tensor.data.Resize(numel_ * sizeof(T));
file_.seekg(position_);
file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
position_ = file_.tellg();
if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
if (file_.fail())
throw std::runtime_error(name_ + ": failed reading file.");
return tensor;
}
protected:
std::ifstream &file_;
size_t position_;
std::vector<int> shape_;
std::string name_;
size_t numel_;
};
std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
const std::vector<std::vector<PaddleTensor>> &test_data,
int num_images = FLAGS_warmup_batch_size) {
int test_data_batch_size = test_data[0][0].shape[0];
auto iterations = test_data.size();
auto all_test_data_size = iterations * test_data_batch_size;
PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
platform::errors::InvalidArgument(
"The requested quantization warmup data size must be "
"lower or equal to the test data size. But received"
"warmup size is %d and test data size is %d. Please "
"use --warmup_batch_size parameter to set smaller "
"warmup batch size.",
num_images, all_test_data_size));
PaddleTensor images;
images.name = "image";
images.shape = {num_images, 3, 224, 224};
images.dtype = PaddleDType::FLOAT32;
images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);
PaddleTensor labels;
labels.name = "label";
labels.shape = {num_images, 1};
labels.dtype = PaddleDType::INT64;
labels.data.Resize(sizeof(int64_t) * num_images);
for (int i = 0; i < num_images; i++) {
auto batch = i / test_data_batch_size;
auto element_in_batch = i % test_data_batch_size;
std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
element_in_batch * 3 * 224 * 224,
3 * 224 * 224,
static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);
std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
element_in_batch,
1, static_cast<int64_t *>(labels.data.data()) + i);
}
auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(2);
(*warmup_data)[0] = std::move(images);
(*warmup_data)[1] = std::move(labels);
return warmup_data;
}
void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
int32_t batch_size = FLAGS_batch_size) {
std::ifstream file(FLAGS_infer_data, std::ios::binary);
if (!file) {
FAIL() << "Couldn't open file: " << FLAGS_infer_data;
}
int64_t total_images{0};
file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
LOG(INFO) << "Total images in file: " << total_images;
std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
std::vector<int> label_batch_shape{batch_size, 1};
auto images_offset_in_file = static_cast<size_t>(file.tellg());
auto labels_offset_in_file =
images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;
TensorReader<float> image_reader(file, images_offset_in_file,
image_batch_shape, "image");
TensorReader<int64_t> label_reader(file, labels_offset_in_file,
label_batch_shape, "label");
auto iterations_max = total_images / batch_size;
auto iterations = iterations_max;
if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
iterations = FLAGS_iterations;
}
for (auto i = 0; i < iterations; i++) {
auto images = image_reader.NextBatch();
auto labels = label_reader.NextBatch();
inputs->emplace_back(
std::vector<PaddleTensor>{std::move(images), std::move(labels)});
}
}
// Compare result between two PaddleTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<PaddleTensor> &ref_outputs) {
EXPECT_GT(outputs.size(), 0UL);
EXPECT_EQ(outputs.size(), ref_outputs.size());
for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i];
auto &ref_out = ref_outputs[i];
size_t size = VecReduceToInt(out.shape);
size_t ref_size = VecReduceToInt(ref_out.shape);
EXPECT_GT(size, 0UL);
EXPECT_EQ(size, ref_size);
EXPECT_EQ(out.dtype, ref_out.dtype);
switch (out.dtype) {
case PaddleDType::INT64: {
int64_t *pdata = static_cast<int64_t *>(out.data.data());
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::FLOAT32: {
float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = static_cast<float *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
CheckError(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::INT32: {
int32_t *pdata = static_cast<int32_t *>(out.data.data());
int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::UINT8: {
uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
uint8_t *pdata_ref = static_cast<uint8_t *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
}
}
}
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<ZeroCopyTensor> &ref_outputs) {
EXPECT_GT(outputs.size(), 0UL);
EXPECT_EQ(outputs.size(), ref_outputs.size());
for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i];
auto &ref_out = ref_outputs[i];
size_t size = VecReduceToInt(out.shape);
EXPECT_GT(size, 0UL);
int ref_size = 0; // this is the number of elements not memory size
PaddlePlace place;
switch (out.dtype) {
case PaddleDType::INT64: {
int64_t *pdata = static_cast<int64_t *>(out.data.data());
int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
EXPECT_EQ(size, static_cast<size_t>(ref_size));
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::FLOAT32: {
float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = ref_out.data<float>(&place, &ref_size);
EXPECT_EQ(size, static_cast<size_t>(ref_size));
for (size_t j = 0; j < size; ++j) {
CheckError(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::INT32: {
int32_t *pdata = static_cast<int32_t *>(out.data.data());
int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
EXPECT_EQ(size, static_cast<size_t>(ref_size));
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::UINT8: {
uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
uint8_t *pdata_ref = ref_out.data<uint8_t>(&place, &ref_size);
EXPECT_EQ(size, static_cast<size_t>(ref_size));
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
}
}
}
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
const PaddlePredictor::Config *config, bool use_analysis = true) {
const auto *analysis_config =
reinterpret_cast<const AnalysisConfig *>(config);
if (use_analysis) {
return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
}
auto native_config = analysis_config->ToNativeConfig();
return CreatePaddlePredictor<NativeConfig>(native_config);
}
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
int *num_ops) {
std::unordered_map<std::string, int> res;
auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
auto *fusion_status =
analysis_predictor->analysis_argument().fusion_statis_ptr();
if (!fusion_status) {
return res;
}
for (auto &item : *fusion_status) {
LOG(INFO) << "fused " << item.first << " " << item.second;
}
int num = 0;
for (auto &node :
analysis_predictor->analysis_argument().main_graph().Nodes()) {
if (node->IsOp()) {
++num;
}
}
*num_ops = num;
return *fusion_status;
}
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
const std::string &dirname, bool is_combined = true,
std::string model_filename = "model",
std::string params_filename = "params",
const std::vector<std::string> *feed_names = nullptr,
const int continuous_inuput_index = 0) {
// Set fake_image_data
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
platform::errors::InvalidArgument(
"In SetFakeImageInput, expected test_all_data = false, "
"but now test_all_data=",
FLAGS_test_all_data));
std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
dirname, is_combined, model_filename, params_filename);
std::ostringstream os;
for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
os << "feed target " << i << ": {" << feed_target_shapes[i][0];
for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
os << ", " << feed_target_shapes[i][j];
}
os << "}\n";
}
LOG(INFO) << os.str();
if (feed_names) {
PADDLE_ENFORCE_EQ(
feed_names->size(), feed_target_shapes.size(),
platform::errors::InvalidArgument(
"The size of feeds_names and size of "
"feed_target_shapes must be equal, but now feeds_names "
"size is %d and feed_target_shapes size is %d",
feed_names->size(), feed_target_shapes.size()));
}
std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
const auto &feed_shape = feed_target_shapes[i];
auto &input = input_slots[i];
std::vector<int> shape({FLAGS_batch_size});
for (size_t s = 1; s < feed_shape.size(); ++s) {
shape.push_back(static_cast<int>(feed_shape[s]));
}
if (feed_names) {
input.name = (*feed_names)[i];
}
input.shape = shape;
input.dtype = PaddleDType::FLOAT32;
size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
[](int a, int b) { return a * b; });
input.data.Resize(len * sizeof(float));
input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
float *input_data = static_cast<float *>(input.data.data());
// fill input data, for profile easily, do not use random data here.
for (size_t j = 0; j < len; ++j) {
*(input_data + j) =
static_cast<float>((j + continuous_inuput_index) % len) / len;
}
}
(*inputs).emplace_back(input_slots);
}
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
std::vector<std::vector<int64_t>> *out,
std::vector<size_t> *lod, size_t batch_iter,
size_t batch_end) {
lod->clear();
lod->push_back(0);
for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
out->push_back(*it);
lod->push_back(lod->back() + (*it).size()); // calculate lod
}
}
void ConvertPaddleTensorToZeroCopyTensor(
PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
for (size_t i = 0; i < inputs.size(); i++) {
auto input = inputs[i];
auto tensor = predictor->GetInputTensor(input.name);
tensor->Reshape(input.shape);
tensor->SetLoD({input.lod});
if (input.dtype == PaddleDType::INT64) {
ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
} else if (input.dtype == PaddleDType::FLOAT32) {
ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
} else if (input.dtype == PaddleDType::INT32) {
ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
} else if (input.dtype == PaddleDType::UINT8) {
ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
} else {
LOG(ERROR) << "unsupported feed type " << input.dtype;
}
}
}
void PredictionWarmUp(PaddlePredictor *predictor,
const std::vector<std::vector<PaddleTensor>> &inputs,
std::vector<std::vector<PaddleTensor>> *outputs,
int num_threads, int tid,
const VarType::Type data_type = VarType::FP32) {
int batch_size = FLAGS_batch_size;
LOG(INFO) << "Running thread " << tid << ", warm up run...";
if (FLAGS_zero_copy) {
ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
}
int iterations = 1;
if (FLAGS_warmup_iters > 1)
iterations = std::min(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
outputs->resize(iterations);
Timer warmup_timer;
double elapsed_time = 0;
if (!FLAGS_zero_copy) {
for (int i = 0; i < iterations; ++i) {
warmup_timer.tic();
predictor->Run(inputs[i], &(*outputs)[i], batch_size);
elapsed_time += warmup_timer.toc();
}
} else {
for (int i = 0; i < iterations; ++i) {
warmup_timer.tic();
predictor->ZeroCopyRun();
elapsed_time += warmup_timer.toc();
}
}
auto batch_latency = elapsed_time / iterations;
PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
data_type);
if (FLAGS_enable_profile) {
paddle::platform::ResetProfiler();
}
}
void PredictionRun(PaddlePredictor *predictor,
const std::vector<std::vector<PaddleTensor>> &inputs,
std::vector<std::vector<PaddleTensor>> *outputs,
int num_threads, int tid,
const VarType::Type data_type = VarType::FP32,
float *sample_latency = nullptr) {
int num_times = FLAGS_repeat;
int iterations = inputs.size(); // process the whole dataset ...
if (FLAGS_iterations > 0 &&
FLAGS_iterations < static_cast<int64_t>(inputs.size()))
iterations =
FLAGS_iterations; // ... unless the number of iterations is set
outputs->resize(iterations);
LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
<< ", run " << num_times << " times...";
Timer run_timer;
double elapsed_time = 0;
#ifdef WITH_GPERFTOOLS
ProfilerStart("paddle_inference.prof");
#endif
int predicted_num = 0;
if (!FLAGS_zero_copy) {
for (int i = 0; i < iterations; i++) {
run_timer.tic();
for (int j = 0; j < num_times; j++) {
predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
}
elapsed_time += run_timer.toc();
predicted_num += FLAGS_batch_size;
if (predicted_num % 100 == 0) {
LOG(INFO) << predicted_num << " samples";
}
}
} else {
for (int i = 0; i < iterations; i++) {
ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
run_timer.tic();
for (int j = 0; j < num_times; j++) {
predictor->ZeroCopyRun();
}
elapsed_time += run_timer.toc();
predicted_num += FLAGS_batch_size;
if (predicted_num % 100 == 0) {
LOG(INFO) << predicted_num << " samples";
}
}
}
#ifdef WITH_GPERFTOOLS
ProfilerStop();
#endif
auto batch_latency = elapsed_time / (iterations * num_times);
PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
iterations, data_type);
if (sample_latency != nullptr)
*sample_latency = batch_latency / FLAGS_batch_size;
if (FLAGS_record_benchmark) {
Benchmark benchmark;
benchmark.SetName(FLAGS_model_name);
benchmark.SetBatchSize(FLAGS_batch_size);
benchmark.SetLatency(batch_latency);
benchmark.PersistToFile("benchmark_record.txt");
}
}
void TestOneThreadPrediction(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs,
std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
const VarType::Type data_type = VarType::FP32,
float *sample_latency = nullptr) {
auto predictor = CreateTestPredictor(config, use_analysis);
if (FLAGS_warmup) {
PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
}
PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
sample_latency);
}
void TestMultiThreadPrediction(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs,
std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
bool use_analysis = true) {
std::vector<std::thread> threads;
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreateTestPredictor(config, use_analysis));
for (int tid = 1; tid < num_threads; tid++) {
predictors.emplace_back(predictors.front()->Clone());
}
for (int tid = 0; tid < num_threads; ++tid) {
threads.emplace_back([&, tid]() {
// Each thread should have local inputs and outputs.
// The inputs of each thread are all the same.
std::vector<std::vector<PaddleTensor>> outputs_tid;
auto &predictor = predictors[tid];
if (FLAGS_warmup) {
PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
tid);
}
PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
});
}
for (int i = 0; i < num_threads; ++i) {
threads[i].join();
}
}
void TestPrediction(const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs,
std::vector<std::vector<PaddleTensor>> *outputs,
int num_threads, bool use_analysis = FLAGS_use_analysis) {
PrintConfig(config, use_analysis);
if (num_threads == 1) {
TestOneThreadPrediction(config, inputs, outputs, use_analysis);
} else {
TestMultiThreadPrediction(config, inputs, outputs, num_threads,
use_analysis);
}
}
void SummarizeAccuracy(float avg_acc_fp32, float avg_acc_int8,
int compared_idx) {
PADDLE_ENFORCE_LE(
compared_idx, 2,
platform::errors::InvalidArgument(
"The compared_idx should be <= 2. But received compared_idx = %d. "
"For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
"Average Precision (mAP), set compared_idx = 2.",
compared_idx));
PADDLE_ENFORCE_GE(
compared_idx, 1,
platform::errors::InvalidArgument(
"The compared_idx should be >= 1. But received compared_idx = %d. "
"For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
"Average Precision (mAP), set compared_idx = 2.",
compared_idx));
std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
LOG(INFO) << "--- Accuracy summary --- ";
LOG(INFO) << "Accepted " << prefix
<< "drop threshold: " << FLAGS_quantized_accuracy
<< ". (condition: (FP32_" << prefix << " - INT8_" << prefix
<< ") <= threshold)";
LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
<< std::setprecision(4) << avg_acc_fp32;
LOG(INFO) << "INT8: avg " << prefix << std::fixed << std::setw(6)
<< std::setprecision(4) << avg_acc_int8;
}
void SummarizePerformance(const char *title, float sample) {
CHECK_GT(sample, 0.0);
auto throughput = 1000.0 / sample;
LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
<< std::setprecision(4) << throughput << ", avg latency: " << sample
<< " ms";
}
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
const char *title, float sample_latency) {
SummarizePerformance(title_fp32, sample_latency_fp32);
SummarizePerformance(title, sample_latency);
}
float CompareAccuracyOne(
const std::vector<std::vector<PaddleTensor>> &output_slots,
int compared_idx) {
PADDLE_ENFORCE_GT(output_slots.size(), 0,
platform::errors::InvalidArgument(
"The accuracy vector is empty. The accuracy vector "
"size should be bigger than 0"));
float total_accs{0};
for (size_t i = 0; i < output_slots.size(); ++i) {
switch (compared_idx) {
case 1:
PADDLE_ENFORCE_GE(
output_slots[i].size(), 2UL,
platform::errors::InvalidArgument(
"To achieve top 1 accuracy, output_slots size "
"must be bigger than or equal to 2, but now the size is %d",
output_slots[i].size()));
break;
case 2:
PADDLE_ENFORCE_GE(
output_slots[i].size(), 3UL,
platform::errors::InvalidArgument(
"To achieve top 5 accuracy or mean Average "
"Precision (mAP), output_slots size must be "
"bigger than or equal to 3, but now the size is %d",
output_slots[i].size()));
break;
default:
throw std::invalid_argument(
"CompareAccuracy: compared_idx is out of range.");
}
if (output_slots[i][compared_idx].lod.size() > 0)
throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
throw std::invalid_argument(
"CompareAccuracy: output is of a wrong type.");
total_accs +=
*static_cast<float *>(output_slots[i][compared_idx].data.data());
}
return total_accs / output_slots.size();
}
void CompareAccuracy(
const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
int compared_idx) {
if ((FLAGS_enable_fp32 && FLAGS_enable_int8) &&
(output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
throw std::invalid_argument(
"CompareAccuracy: output_slots vector is empty.");
float avg_acc_quant = 0.0;
float avg_acc_ref = 0.0;
if (FLAGS_enable_int8)
avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);
if (FLAGS_enable_fp32)
avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);
if (FLAGS_enable_int8) CHECK_GT(avg_acc_quant, 0.0);
if (FLAGS_enable_fp32 && FLAGS_enable_int8)
CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
}
void CompareDeterministic(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);
std::vector<PaddleTensor> warmup_outputs, outputs;
// run num_times to Compare Deterministic Result.
for (size_t j = 0; j < inputs.size(); j++) {
// warmup run
predictor->Run(inputs[j], &warmup_outputs, batch_size);
for (int i = 0; i < num_times; i++) {
predictor->Run(inputs[j], &outputs, batch_size);
CompareResult(outputs, warmup_outputs);
}
}
}
void CompareNativeAndAnalysis(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
PrintConfig(config, true);
std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
TestOneThreadPrediction(config, inputs, &native_outputs, false);
TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
PADDLE_ENFORCE_GT(native_outputs.size(), 0,
platform::errors::InvalidArgument(
"The native outputs is empty. The native outputs "
"vector size must be bigger than 0"));
PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
platform::errors::InvalidArgument(
"The analysis outputs is empty. The analysis outputs "
"vector size must be bigger than 0"));
CompareResult(analysis_outputs.back(), native_outputs.back());
}
void CompareQuantizedAndAnalysis(
const AnalysisConfig *config, const AnalysisConfig *qconfig,
const std::vector<std::vector<PaddleTensor>> &inputs,
const int compared_idx = 1) {
PADDLE_ENFORCE_EQ(
inputs[0][0].shape[0], FLAGS_batch_size,
platform::errors::InvalidArgument(
"Input data has to be packed batch by batch. The batchsize is set to "
"%d, but the real input is packed with batchsize = %d",
FLAGS_batch_size, inputs[0][0].shape[0]));
LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
<< ", warmup batch size " << FLAGS_warmup_batch_size << ".";
LOG(INFO) << "--- FP32 prediction start ---";
auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
PrintConfig(cfg, true);
std::vector<std::vector<PaddleTensor>> analysis_outputs;
float sample_latency_fp32{-1};
if (FLAGS_enable_fp32) {
TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
&sample_latency_fp32);
}
LOG(INFO) << "--- INT8 prediction start ---";
auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
PrintConfig(qcfg, true);
std::vector<std::vector<PaddleTensor>> quantized_outputs;
float sample_latency_int8{-1};
if (FLAGS_enable_int8) {
TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
VarType::INT8, &sample_latency_int8);
}
SummarizePerformance("FP32", sample_latency_fp32, "INT8",
sample_latency_int8);
CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
}
void CompareBFloat16AndAnalysis(
const AnalysisConfig *config, const AnalysisConfig *qconfig,
const std::vector<std::vector<PaddleTensor>> &inputs,
const int compared_idx = 1) {
PADDLE_ENFORCE_EQ(
inputs[0][0].shape[0], FLAGS_batch_size,
platform::errors::InvalidArgument(
"Input data has to be packed batch by batch. The batchsize is set to "
"%d, but the real input is packed with batchsize = %d",
FLAGS_batch_size, inputs[0][0].shape[0]));
LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;
LOG(INFO) << "--- FP32 prediction start ---";
auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
PrintConfig(cfg, true);
std::vector<std::vector<PaddleTensor>> analysis_outputs;
float sample_latency_fp32{-1};
if (FLAGS_enable_fp32) {
TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
&sample_latency_fp32);
}
LOG(INFO) << "--- BF16 prediction start ---";
auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
PrintConfig(qcfg, true);
std::vector<std::vector<PaddleTensor>> bf16_outputs;
float sample_latency_bf16{-1};
if (FLAGS_enable_bf16) {
TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
&sample_latency_bf16);
}
SummarizePerformance("FP32", sample_latency_fp32, "BF16",
sample_latency_bf16);
CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
}
void CompareAnalysisAndAnalysis(
const AnalysisConfig *config1, const AnalysisConfig *config2,
const std::vector<std::vector<PaddleTensor>> &inputs,
const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
const int compared_idx = 1) {
PADDLE_ENFORCE_EQ(
inputs[0][0].shape[0], FLAGS_batch_size,
platform::errors::InvalidArgument(
"Input data has to be packed batch by batch. The batchsize is set to "
"%d, but the real input is packed with batchsize = %d",
FLAGS_batch_size, inputs[0][0].shape[0]));
LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
<< ", warmup batch size " << FLAGS_warmup_batch_size << ".";
LOG(INFO) << "--- FP32 prediction start ---";
auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
PrintConfig(cfg1, true);
std::vector<std::vector<PaddleTensor>> analysis_outputs;
float sample_latency_fp32{-1};
if (FLAGS_enable_fp32) {
TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
VarType::FP32, &sample_latency_fp32);
}
LOG(INFO) << "--- INT8 prediction start ---";
auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
PrintConfig(cfg2, true);
std::vector<std::vector<PaddleTensor>> int8_outputs;
float sample_latency_int8{-1};
if (FLAGS_enable_int8) {
TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
&sample_latency_int8);
}
SummarizePerformance("FP32", sample_latency_fp32, "INT8",
sample_latency_int8);
if (with_accuracy_layer) {
CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
}
}
void CompareNativeAndAnalysis(
PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
const std::vector<std::vector<PaddleTensor>> &inputs) {
int batch_size = FLAGS_batch_size;
std::vector<PaddleTensor> native_outputs, analysis_outputs;
native_pred->Run(inputs[0], &native_outputs, batch_size);
analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
CompareResult(analysis_outputs, native_outputs);
}
void CompareAnalysisAndZeroCopy(
PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
const std::vector<std::vector<PaddleTensor>> &inputs,
const std::vector<std::string> &outputs_name) {
int batch_size = FLAGS_batch_size;
// analysis
std::vector<PaddleTensor> analysis_outputs;
auto predictor = CreateTestPredictor(config, true);
predictor->Run(inputs[0], &analysis_outputs, batch_size);
// analysis + zero_copy
std::vector<ZeroCopyTensor> zerocopy_outputs;
reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
predictor = CreateTestPredictor(config1, true);
ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
predictor->ZeroCopyRun();
for (size_t i = 0; i < outputs_name.size(); i++) {
ZeroCopyTensor zerocopy_output =
*predictor->GetOutputTensor(outputs_name[i]).get();
zerocopy_outputs.emplace_back(zerocopy_output);
LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
}
// compare
CompareResult(analysis_outputs, zerocopy_outputs);
}
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
auto predictor = CreateTestPredictor(
reinterpret_cast<const PaddlePredictor::Config *>(cfg),
FLAGS_use_analysis);
(static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
std::stringstream ss;
ss << "\n---- tensor ---" << '\n';
ss << "lod: [";
for (const auto &level : tensor.lod()) {
ss << "[ ";
for (auto i : level) {
ss << i << ", ";
}
ss << "]";
}
ss << "]\n";
ss << "shape: [";
int size = 1;
for (int i = 0; i < tensor.dims().size(); i++) {
int dim = tensor.dims()[i];
ss << dim << ", ";
size *= dim;
}
ss << "]\n";
ss << "data: ";
for (int i = 0; i < std::min(20, size); i++) {
ss << tensor.data<T>()[i] << " ";
}
ss << "\n";
return ss.str();
}
static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
if (a.size() != b.size()) {
LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
b.size());
return false;
}
for (size_t i = 0; i < a.size(); i++) {
auto &al = a[i];
auto &bl = b[i];
if (al.size() != bl.size()) {
LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
bl.size());
return false;
}
}
return true;
}
static bool CompareShape(const std::vector<int64_t> &a,
const std::vector<int64_t> &b) {
if (a.size() != b.size()) {
LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
b.size());
return false;
}
for (size_t i = 0; i < a.size(); i++) {
if (a[i] != b[i]) {
LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
a[i], b[i]);
return false;
}
}
return true;
}
static bool CompareTensorData(const framework::LoDTensor &a,
const framework::LoDTensor &b) {
auto a_shape = framework::vectorize(a.dims());
auto b_shape = framework::vectorize(b.dims());
size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
[](int a, int b) { return a * b; });
size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
[](int a, int b) { return a * b; });
if (a_size != b_size) {
LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
a_size, b_size);
}
for (size_t i = 0; i < a_size; i++) {
if (a.type() == VarType::FP32) {
const auto *a_data = a.data<float>();
const auto *b_data = b.data<float>();
if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
LOG(ERROR) << string::Sprintf(
"tensor data %d-th element not match, %f != %f", i, a_data[i],
b_data[i]);
return false;
}
} else if (a.type() == VarType::INT64) {
const auto *a_data = a.data<int64_t>();
const auto *b_data = b.data<int64_t>();
if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
LOG(ERROR) << string::Sprintf(
"tensor data %d-th element not match, %f != %f", i, a_data[i],
b_data[i]);
return false;
}
}
}
return true;
}
static bool CompareTensor(const framework::LoDTensor &a,
const framework::LoDTensor &b) {
if (!CompareLoD(a.lod(), b.lod())) {
return false;
}
if (!CompareShape(framework::vectorize(a.dims()),
framework::vectorize(b.dims()))) {
return false;
}
if (!CompareTensorData(a, b)) {
return false;
}
return true;
}
} // namespace inference
} // namespace paddle