You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
6.4 KiB
175 lines
6.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#ifndef _USE_MATH_DEFINES
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct GeluFunctor {
|
|
template <typename Device, typename X, typename Out>
|
|
void operator()(Device d, X x, Out out, bool approximate) const {
|
|
if (approximate) {
|
|
// gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
|
|
auto temp = (static_cast<T>(M_2_SQRTPI * M_SQRT1_2) *
|
|
(x + static_cast<T>(0.044715) * x.cube()))
|
|
.tanh();
|
|
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
|
|
} else {
|
|
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
|
|
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
|
|
auto x_data = x.data();
|
|
auto out_data = out.data();
|
|
int n = std::min(x.size(), out.size());
|
|
|
|
std::memset(out_data, 0, n * sizeof(T));
|
|
math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, out_data,
|
|
1);
|
|
math::CBlas<T>::VMERF(n, out_data, out_data, VML_LA);
|
|
for (int i = 0; i < n; i++) {
|
|
out_data[i] += static_cast<T>(1);
|
|
}
|
|
math::CBlas<T>::VMUL(n, x_data, out_data, out_data);
|
|
for (int i = 0; i < n; i++) {
|
|
out_data[i] *= static_cast<T>(0.5);
|
|
}
|
|
#else
|
|
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
|
|
auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
|
|
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
|
|
#endif
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct GeluGradFunctor {
|
|
template <typename Device, typename X, typename dOut, typename dX>
|
|
void operator()(Device d, X x, dOut dout, dX dx, bool approximate) const {
|
|
if (approximate) {
|
|
const T kAlpha = static_cast<T>(M_2_SQRTPI * M_SQRT1_2);
|
|
const T kBeta = kAlpha * static_cast<T>(0.044715) * static_cast<T>(3);
|
|
const auto y =
|
|
(kAlpha * ((static_cast<T>(0.044715) * x.cube()) + x)).tanh();
|
|
dx.device(d) = static_cast<T>(0.5) * dout *
|
|
(static_cast<T>(1) + y +
|
|
(x - x * y.square()) * (kAlpha + kBeta * x.square()));
|
|
} else {
|
|
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
|
|
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
|
|
auto x_data = x.data();
|
|
auto dx_data = dx.data();
|
|
auto dout_data = dout.data();
|
|
int n = std::min(x.size(), dx.size());
|
|
|
|
auto first = static_cast<T*>(std::malloc(n * sizeof(T)));
|
|
std::memset(first, 0, n * sizeof(T));
|
|
auto second = static_cast<T*>(std::malloc(n * sizeof(T)));
|
|
std::memset(second, 0, n * sizeof(T));
|
|
|
|
// first = (0.5 * (1 + erf(x / sqrt(2))))
|
|
math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, first, 1);
|
|
math::CBlas<T>::VMERF(n, first, first, VML_LA);
|
|
for (int i = 0; i < n; i++) {
|
|
first[i] += static_cast<T>(1);
|
|
}
|
|
math::CBlas<T>::SCAL(n, static_cast<T>(0.5), first, 1);
|
|
|
|
// second = (0.5 * 2/sqrt(pi) * 1/sqrt(2) * x * exp(-0.5 * x^2))
|
|
math::CBlas<T>::VSQUARE(n, x_data, second);
|
|
math::CBlas<T>::SCAL(n, -static_cast<T>(0.5), second, 1);
|
|
math::CBlas<T>::VEXP(n, second, second);
|
|
math::CBlas<T>::VMUL(n, x_data, second, second);
|
|
math::CBlas<T>::SCAL(n, static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2),
|
|
second, 1);
|
|
|
|
// dx = dout * (first + second);
|
|
math::CBlas<T>::VADD(n, first, second, first);
|
|
math::CBlas<T>::VMUL(n, dout_data, first, dx_data);
|
|
|
|
std::free(first);
|
|
std::free(second);
|
|
#else
|
|
// gelu_grad(x) = dout * 0.5 * (1 + erf(x / sqrt(2)) + x * sqrt(2 / pi) *
|
|
// exp(- x^2 / 2)
|
|
auto first =
|
|
static_cast<T>(0.5) *
|
|
(static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));
|
|
|
|
auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
|
|
(-static_cast<T>(0.5) * x.square()).exp();
|
|
dx.device(d) = dout * (first + second);
|
|
#endif
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class GeluKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* out = context.Output<framework::Tensor>("Out");
|
|
auto* in = context.Input<framework::Tensor>("X");
|
|
auto approximate = context.Attr<bool>("approximate");
|
|
out->mutable_data<T>(in->place());
|
|
|
|
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
|
|
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
GeluFunctor<T> functor;
|
|
functor(place, eigen_in, eigen_out, approximate);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class GeluGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* x = context.Input<framework::Tensor>("X");
|
|
auto* dout =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
auto approximate = context.Attr<bool>("approximate");
|
|
dx->mutable_data<T>(dout->place());
|
|
|
|
auto eigen_x = framework::EigenVector<T>::Flatten(*x);
|
|
auto eigen_dout = framework::EigenVector<T>::Flatten(*dout);
|
|
auto eigen_dx = framework::EigenVector<T>::Flatten(*dx);
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
GeluGradFunctor<T> functor;
|
|
functor(place, eigen_x, eigen_dout, eigen_dx, approximate);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|