You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
4.7 KiB
146 lines
4.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <functional>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
|
|
|
DECLARE_uint64(conv_workspace_size_limit);
|
|
DECLARE_bool(cudnn_exhaustive_search);
|
|
DECLARE_int64(cudnn_exhaustive_search_times);
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
static constexpr char kCUDNNFwdAlgoCache[] = "kCUDNNFwdAlgoCache";
|
|
static constexpr char kCUDNNBwdDataAlgoCache[] = "kCUDNNBwdDataAlgoCache";
|
|
static constexpr char kCUDNNBwdFilterAlgoCache[] = "kCUDNNBwdFilterAlgoCache";
|
|
|
|
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
|
|
static_cast<size_t>(1024) * 1024 * 1024;
|
|
|
|
#if CUDNN_VERSION_MIN(6, 0, 5)
|
|
static constexpr size_t kNUM_CUDNN_FWD_ALGS = CUDNN_CONVOLUTION_FWD_ALGO_COUNT;
|
|
static constexpr size_t kNUM_CUDNN_BWD_FILTER_ALGS =
|
|
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
|
|
static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS =
|
|
CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT;
|
|
#else
|
|
// cuDNN v5 has no CUDNN_CONVOLUTION_FWD_ALGO_COUNT etc.
|
|
static constexpr size_t kNUM_CUDNN_FWD_ALGS = 7;
|
|
static constexpr size_t kNUM_CUDNN_BWD_FILTER_ALGS = 4;
|
|
static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS = 5;
|
|
#endif
|
|
|
|
template <typename TAlgorithm>
|
|
class AlgorithmsCache {
|
|
public:
|
|
AlgorithmsCache() : search_times_(0) { hash_.clear(); }
|
|
// Caches the best algorithm for a given
|
|
// combination of tensor dimensions & compute data type.
|
|
TAlgorithm GetAlgorithm(
|
|
const std::vector<int64_t>& dims1, const std::vector<int64_t>& dims2,
|
|
const std::vector<int>& strides, const std::vector<int>& paddings,
|
|
const std::vector<int>& dilations,
|
|
int algorithmFlags, // can set for different data type
|
|
std::function<TAlgorithm()> gen_func);
|
|
|
|
TAlgorithm GetAlgorithm(int64_t area, int search_times, int algorithmFlags,
|
|
std::function<TAlgorithm()> gen_func);
|
|
|
|
private:
|
|
std::unordered_map<int64_t, TAlgorithm> hash_;
|
|
std::mutex mutex_;
|
|
|
|
int search_times_;
|
|
};
|
|
|
|
template <typename TAlgorithm>
|
|
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
|
|
const std::vector<int64_t>& dims1, const std::vector<int64_t>& dims2,
|
|
const std::vector<int>& strides, const std::vector<int>& paddings,
|
|
const std::vector<int>& dilations, int algorithmFlags,
|
|
std::function<TAlgorithm()> gen_func) {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
int64_t seed = 0;
|
|
// Hash all of the inputs, use to try and look up a previously
|
|
// discovered algorithm, or fall back to generating a new one.
|
|
std::hash<int64_t> hashFn;
|
|
// do hash like boost
|
|
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
|
|
for (const auto num : dims1) {
|
|
seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
|
}
|
|
|
|
for (const auto num : dims2) {
|
|
seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2) + 1;
|
|
}
|
|
|
|
for (const auto num : strides) {
|
|
seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
|
|
(seed >> 2) + 2;
|
|
}
|
|
|
|
for (const auto num : paddings) {
|
|
seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
|
|
(seed >> 2) + 3;
|
|
}
|
|
|
|
for (const auto num : dilations) {
|
|
seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
|
|
(seed >> 2) + 4;
|
|
}
|
|
|
|
seed ^= hashFn(static_cast<int64_t>(algorithmFlags)) + 0x9e3779b9 +
|
|
(seed << 6) + (seed >> 2) + 5;
|
|
|
|
if (seed == 0) return gen_func();
|
|
|
|
if (hash_.find(seed) == hash_.end()) {
|
|
TAlgorithm value = gen_func();
|
|
hash_[seed] = value;
|
|
}
|
|
return hash_[seed];
|
|
}
|
|
|
|
template <typename TAlgorithm>
|
|
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
|
|
int64_t area, int search_times, int algorithmFlags,
|
|
std::function<TAlgorithm()> gen_func) {
|
|
if (hash_.find(area) != hash_.end()) {
|
|
return hash_[area];
|
|
}
|
|
if (search_times_ < search_times) {
|
|
auto algo = gen_func();
|
|
hash_[area] = algo;
|
|
++search_times_;
|
|
return algo;
|
|
}
|
|
TAlgorithm algo;
|
|
int64_t min = static_cast<uint64_t>(INT_MAX);
|
|
for (const auto& m : hash_) {
|
|
if (m.first < min) {
|
|
min = m.first;
|
|
algo = m.second;
|
|
}
|
|
}
|
|
return algo;
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|