You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
400 lines
16 KiB
400 lines
16 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
|
|
#include <cstring> // for memcpy
|
|
#include <string>
|
|
#include "paddle/fluid/operators/jit/kernels.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/fc_compute.h"
|
|
#include "paddle/fluid/operators/math/sequence2batch.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
|
|
PADDLE_ENFORCE(ctx->HasInput("WeightX"),
|
|
"Assert only one Input(WeightX) of GRU.");
|
|
PADDLE_ENFORCE(ctx->HasInput("WeightH"),
|
|
"Assert only one Input(WeightH) of GRU.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
|
|
"Assert only one Output(Hidden) of GRU.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
|
|
|
|
auto wx_dims = ctx->GetInputDim("WeightX");
|
|
PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
|
|
"The rank of Input(WeightX) should be 2.");
|
|
PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
|
|
"The first dimension of Input(WeightX) "
|
|
"should be %d.",
|
|
x_dims[1]);
|
|
|
|
int frame_size = wx_dims[1] / 3;
|
|
auto wh_dims = ctx->GetInputDim("WeightH");
|
|
PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
|
|
"The rank of Input(WeightH) should be 2.");
|
|
PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
|
|
"The first dimension of Input(WeightH) "
|
|
"should be %d.",
|
|
frame_size);
|
|
PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
|
|
"The second dimension of Input(WeightH) "
|
|
"should be 3 * %d.",
|
|
frame_size);
|
|
|
|
if (ctx->HasInput("H0")) {
|
|
auto h0_dims = ctx->GetInputDim("H0");
|
|
PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
|
|
"The width of H0 must be equal to frame_size.");
|
|
}
|
|
if (ctx->HasInput("Bias")) {
|
|
auto b_dims = ctx->GetInputDim("Bias");
|
|
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
|
|
PADDLE_ENFORCE_EQ(b_dims[0], 1,
|
|
"The first dimension of Input(Bias) should be 1.");
|
|
PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
|
|
"The shape of Bias must be [1, frame_size * 3].");
|
|
}
|
|
framework::DDim out_dims({x_dims[0], frame_size});
|
|
ctx->SetOutputDim("Hidden", out_dims);
|
|
ctx->ShareLoD("X", "Hidden");
|
|
int xx_width;
|
|
if (ctx->Attrs().Get<bool>("use_seq")) {
|
|
xx_width = wx_dims[1];
|
|
} else {
|
|
xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
|
|
PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
|
|
"Assert only one Output(ReorderedH0) of GRU.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
|
|
"Assert only one Output(BatchedInput) of GRU.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
|
|
"Assert only one Output(BatchedOut) of GRU.");
|
|
ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
|
|
ctx->SetOutputDim("BatchedOut", out_dims);
|
|
}
|
|
ctx->SetOutputDim("XX", {x_dims[0], xx_width});
|
|
ctx->ShareLoD("X", "XX");
|
|
}
|
|
|
|
framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
|
|
void FusionGRUOpMaker::Make() {
|
|
AddInput("X",
|
|
"(LoDTensor) the input is a LodTensor, which support "
|
|
"variable-time length input sequence. The underlying tensor in "
|
|
"this LoDTensor is a matrix with shape (T X M), where T is the "
|
|
"total time steps in this mini-batch, M is the dim size of x.");
|
|
AddInput("H0",
|
|
"(Tensor, optional) The initial hidden state is an optional "
|
|
"input. This is a tensor with shape (N x D), where N is the "
|
|
"batch size, D is the hidden size.")
|
|
.AsDispensable();
|
|
AddInput("WeightX",
|
|
"(Tensor) The FC weight with shape (M x 3D),"
|
|
"where M is the dim size of x, D is the hidden size. ");
|
|
AddInput("WeightH",
|
|
"(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
|
|
"This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
|
|
"Acutally they are D x 2D and D x D two part weights."
|
|
"{W_update, W_reset; W_state}"
|
|
"{D x (D + D); D x D}");
|
|
AddInput("Bias",
|
|
"(Tensor, optional) (1 x 3D)."
|
|
"Almost same as GRUOp."
|
|
"Note: if have FC bias it should be added on this bias.")
|
|
.AsDispensable();
|
|
AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
|
|
.AsIntermediate();
|
|
AddOutput("XX",
|
|
"(LoDTensor) the result after X * WeightX (size is T x 3D)"
|
|
" or batched_X (size is T x M), this will be automatically chosen,"
|
|
" where T is the total time steps in this mini-batch,"
|
|
" D is the hidden size, M is the dim size of x input.")
|
|
.AsIntermediate();
|
|
AddOutput("BatchedInput",
|
|
"(LoDTensor) This is the batched result of input X"
|
|
"or the batched result after fc, shape (T x 3D)")
|
|
.AsIntermediate();
|
|
AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
|
|
.AsIntermediate();
|
|
AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
|
|
AddAttr<std::string>("activation",
|
|
"(string, default tanh) "
|
|
"The activation type used for output candidate {h}_t.")
|
|
.SetDefault("tanh");
|
|
AddAttr<std::string>(
|
|
"gate_activation",
|
|
"(string, default sigmoid) "
|
|
"The activation type used in update gate and reset gate.")
|
|
.SetDefault("sigmoid");
|
|
AddAttr<bool>("is_reverse",
|
|
"(bool, defalut: False) "
|
|
"whether to compute reversed GRU.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("use_seq",
|
|
"(bool, defalut: True) "
|
|
"whether to use seq mode to compute GRU.")
|
|
.SetDefault(true);
|
|
AddComment(R"DOC(
|
|
The Fusion complete GRU Operator.
|
|
This operator fuse the fully-connected operator into GRU,
|
|
more details can refer to GRU op.
|
|
)DOC");
|
|
}
|
|
|
|
template <typename T>
|
|
class FusionGRUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
if (ctx.Attr<bool>("use_seq")) {
|
|
SeqCompute(ctx);
|
|
} else {
|
|
BatchCompute(ctx);
|
|
}
|
|
}
|
|
|
|
#define INIT_BASE_DEFINES \
|
|
auto* x = ctx.Input<LoDTensor>("X"); \
|
|
auto* wh = ctx.Input<Tensor>("WeightH"); \
|
|
auto* xx = ctx.Output<LoDTensor>("XX"); \
|
|
auto x_lod = x->lod(); \
|
|
auto x_dims = x->dims(); /* T x M*/ \
|
|
auto wh_dims = wh->dims(); /* D x 3D*/ \
|
|
const int total_T = x_dims[0]; \
|
|
const int D3 = wh_dims[1]
|
|
|
|
#define INIT_OTHER_DEFINES \
|
|
auto* h0 = ctx.Input<Tensor>("H0"); \
|
|
auto* wx = ctx.Input<Tensor>("WeightX"); \
|
|
auto* bias = ctx.Input<Tensor>("Bias"); \
|
|
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
|
|
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
|
|
const int M = x_dims[1]; \
|
|
const int D = wh_dims[0]; \
|
|
const int D2 = D * 2; \
|
|
const jit::gru_attr_t attr( \
|
|
D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")), \
|
|
jit::to_kerneltype(ctx.Attr<std::string>("activation"))); \
|
|
jit::gru_t one_step; \
|
|
auto ComputeH1 = \
|
|
jit::Get<jit::kGRUH1, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
|
|
auto ComputeHtPart1 = \
|
|
jit::Get<jit::kGRUHtPart1, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
|
|
auto ComputeHtPart2 = \
|
|
jit::Get<jit::kGRUHtPart2, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
|
|
const T* x_data = x->data<T>(); \
|
|
const T* wx_data = wx->data<T>(); \
|
|
const T* wh_data = wh->data<T>(); \
|
|
auto place = ctx.GetPlace(); \
|
|
T* xx_data = xx->mutable_data<T>(place)
|
|
|
|
void SeqCompute(const framework::ExecutionContext& ctx) const {
|
|
using DeviceContext = paddle::platform::CPUDeviceContext;
|
|
INIT_BASE_DEFINES;
|
|
INIT_OTHER_DEFINES;
|
|
const int N = x_lod[0].size() - 1;
|
|
const T* h0_data = h0 ? h0->data<T>() : nullptr;
|
|
const T* wh_state_data = wh_data + D * D2;
|
|
T* hidden_out_data = hidden_out->mutable_data<T>(place);
|
|
auto blas = math::GetBlas<DeviceContext, T>(ctx);
|
|
math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
|
|
xx_data,
|
|
bias ? bias->data<T>() : nullptr);
|
|
|
|
int xx_offset = D3;
|
|
int gate_offset = D;
|
|
if (is_reverse) {
|
|
const int offset = (total_T - 1) * D;
|
|
xx_data = xx_data + offset * 3;
|
|
hidden_out_data = hidden_out_data + offset;
|
|
xx_offset = -D3;
|
|
gate_offset = -D;
|
|
}
|
|
auto move_step = [&]() {
|
|
xx_data = xx_data + xx_offset;
|
|
hidden_out_data = hidden_out_data + gate_offset;
|
|
};
|
|
for (int i = 0; i < N; ++i) {
|
|
int bid = is_reverse ? N - 1 - i : i;
|
|
int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
|
|
const T* prev_hidden_data = nullptr;
|
|
int tstart = 0;
|
|
if (h0_data) {
|
|
prev_hidden_data = h0_data + bid * D;
|
|
} else {
|
|
one_step.gates = xx_data;
|
|
one_step.ht = hidden_out_data;
|
|
ComputeH1(&one_step, &attr);
|
|
prev_hidden_data = hidden_out_data;
|
|
tstart = 1;
|
|
move_step();
|
|
}
|
|
for (int step = tstart; step < seq_len; ++step) {
|
|
// gemm prev * (Wu + Wr)
|
|
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
|
|
prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
|
|
D3);
|
|
one_step.gates = xx_data;
|
|
one_step.ht_1 = prev_hidden_data;
|
|
one_step.ht = hidden_out_data;
|
|
ComputeHtPart1(&one_step, &attr);
|
|
// gemm rt * Ws
|
|
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
|
|
hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
|
|
xx_data + D2, D3);
|
|
ComputeHtPart2(&one_step, &attr);
|
|
// save prev
|
|
prev_hidden_data = hidden_out_data;
|
|
move_step();
|
|
}
|
|
}
|
|
}
|
|
|
|
void BatchCompute(const framework::ExecutionContext& ctx) const {
|
|
using DeviceContext = paddle::platform::CPUDeviceContext;
|
|
INIT_BASE_DEFINES;
|
|
if (x_lod[0].size() == 2) {
|
|
xx->Resize({total_T, D3});
|
|
SeqCompute(ctx);
|
|
return;
|
|
}
|
|
INIT_OTHER_DEFINES;
|
|
auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
|
|
auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
|
|
auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
|
|
T* batched_input_data = batched_input->mutable_data<T>(place);
|
|
T* batched_out_data = batched_out->mutable_data<T>(place);
|
|
hidden_out->mutable_data<T>(place);
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
|
|
if (M > D3) {
|
|
math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
|
|
xx_data,
|
|
bias ? bias->data<T>() : nullptr);
|
|
to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
|
|
} else {
|
|
to_batch(dev_ctx, *x, xx, true, is_reverse);
|
|
batched_input->set_lod(xx->lod());
|
|
math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
|
|
batched_input_data,
|
|
bias ? bias->data<T>() : nullptr);
|
|
}
|
|
|
|
auto batched_lod = batched_input->lod();
|
|
const auto& seq_order = batched_lod[2];
|
|
const int max_bs = seq_order.size();
|
|
reordered_h0->Resize({max_bs, D});
|
|
|
|
int tstart = 0;
|
|
T* prev_hidden_data = nullptr;
|
|
if (h0) {
|
|
// reorder h0
|
|
T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
|
|
const T* h0_data = h0->data<T>();
|
|
prev_hidden_data = reordered_h0_data;
|
|
size_t sz = sizeof(T) * D;
|
|
for (int i = 0; i < max_bs; ++i) {
|
|
std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
|
|
reordered_h0_data += D;
|
|
}
|
|
} else {
|
|
// compute without h0
|
|
T* cur_in_data = batched_input_data;
|
|
T* cur_out_data = batched_out_data;
|
|
// W: {W_update, W_reset; W_state}
|
|
for (int i = 0; i < max_bs; ++i) {
|
|
one_step.gates = cur_in_data;
|
|
one_step.ht = cur_out_data;
|
|
ComputeH1(&one_step, &attr);
|
|
// add offset
|
|
cur_in_data += D3;
|
|
cur_out_data += D;
|
|
}
|
|
tstart = 1;
|
|
prev_hidden_data = batched_out_data;
|
|
}
|
|
// Then start from next
|
|
const T* wh_state_data = wh_data + D * D2;
|
|
const auto& batch_starts = batched_lod[0];
|
|
const int max_seq_len = batch_starts.size() - 1;
|
|
batched_input_data = batched_input_data + tstart * max_bs * D3;
|
|
batched_out_data = batched_out_data + tstart * max_bs * D;
|
|
for (int step = tstart; step < max_seq_len; ++step) {
|
|
const int cur_bs = batch_starts[step + 1] - batch_starts[step];
|
|
// gemm prev * (Wu + Wr)
|
|
blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
|
|
prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
|
|
batched_input_data, D3);
|
|
|
|
T* cur_batched_data = batched_input_data;
|
|
T* cur_out_data = batched_out_data;
|
|
T* cur_prev_hidden_data = prev_hidden_data;
|
|
for (int i = 0; i < cur_bs; ++i) {
|
|
one_step.gates = cur_batched_data;
|
|
one_step.ht_1 = cur_prev_hidden_data;
|
|
one_step.ht = cur_out_data;
|
|
ComputeHtPart1(&one_step, &attr);
|
|
|
|
cur_batched_data += D3;
|
|
cur_prev_hidden_data += D;
|
|
cur_out_data += D;
|
|
}
|
|
|
|
cur_batched_data = batched_input_data;
|
|
cur_out_data = batched_out_data;
|
|
blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
|
|
cur_out_data, D, wh_state_data, D, static_cast<T>(1),
|
|
cur_batched_data + D2, D3);
|
|
|
|
cur_prev_hidden_data = prev_hidden_data;
|
|
for (int i = 0; i < cur_bs; ++i) {
|
|
one_step.gates = cur_batched_data;
|
|
one_step.ht_1 = cur_prev_hidden_data;
|
|
one_step.ht = cur_out_data;
|
|
ComputeHtPart2(&one_step, &attr);
|
|
cur_batched_data += D3;
|
|
cur_prev_hidden_data += D;
|
|
cur_out_data += D;
|
|
}
|
|
prev_hidden_data = batched_out_data;
|
|
batched_out_data = cur_out_data;
|
|
batched_input_data = cur_batched_data;
|
|
}
|
|
|
|
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
|
|
batched_out->set_lod(batched_lod);
|
|
to_seq(dev_ctx, *batched_out, hidden_out);
|
|
}
|
|
#undef INIT_OTHER_DEFINES
|
|
#undef INIT_BASE_DEFINES
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
|
|
ops::FusionGRUKernel<double>);
|