You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.7 KiB
100 lines
3.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/optimizers/sgd_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SGDOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
|
"Input(Param) of SGDOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
|
"Input(Grad) of SGDOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
|
"Input(LearningRate) of SGDOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
|
"Output(ParamOut) of SGDOp should not be null.");
|
|
|
|
auto lr_dims = ctx->GetInputDim("LearningRate");
|
|
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
|
|
"Learning rate should have 1 element");
|
|
auto param_dim = ctx->GetInputDim("Param");
|
|
// TODO(qijun): check dimensions of Param and Grad at compile
|
|
// and runtime.
|
|
ctx->SetOutputDim("ParamOut", param_dim);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Param"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SGDOpInferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc &op_desc,
|
|
framework::BlockDesc *block) const override {
|
|
auto input_var_n = op_desc.Input("Param")[0];
|
|
auto in_var_type = block->FindRecursiveOrCreateVar(input_var_n).GetType();
|
|
PADDLE_ENFORCE(in_var_type == framework::proto::VarType::SELECTED_ROWS ||
|
|
in_var_type == framework::proto::VarType::LOD_TENSOR,
|
|
"The input Var's type should be LoDtensor or SelectedRows,"
|
|
" but the received var(%s)'s type is %s",
|
|
input_var_n, in_var_type);
|
|
|
|
for (auto &out_var_n : op_desc.Output("ParamOut")) {
|
|
auto &out_var = block->FindRecursiveOrCreateVar(out_var_n);
|
|
if (out_var.GetType() != in_var_type) {
|
|
out_var.SetType(in_var_type);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Param", "(Tensor or SelectedRows) Input parameter");
|
|
AddInput("LearningRate", "(Tensor) Learning rate of SGD");
|
|
AddInput("Grad", "(Tensor or SelectedRows) Input gradient");
|
|
AddOutput("ParamOut",
|
|
"(Tensor or SelectedRows, same with Param) "
|
|
"Output parameter, should share the same memory with Param");
|
|
AddComment(R"DOC(
|
|
|
|
SGD operator
|
|
|
|
This operator implements one step of the stochastic gradient descent algorithm.
|
|
|
|
$$param\_out = param - learning\_rate * grad$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(sgd, ops::SGDOp, ops::SGDOpMaker,
|
|
paddle::framework::EmptyGradOpMaker, ops::SGDOpInferVarType);
|
|
REGISTER_OP_CPU_KERNEL(sgd, ops::SGDOpKernel<float>, ops::SGDOpKernel<double>);
|