You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
5.1 KiB
127 lines
5.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/selected_rows.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
class SGDOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
|
|
|
const auto *param_var = ctx.InputVar("Param");
|
|
const auto *grad_var = ctx.InputVar("Grad");
|
|
|
|
if (param_var->IsType<framework::LoDTensor>()) {
|
|
const auto *param = ctx.Input<framework::Tensor>("Param");
|
|
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
|
|
|
|
// Actually, all tensors are LoDTensor except SelectedRows.
|
|
if (grad_var->IsType<framework::LoDTensor>()) {
|
|
param_out->mutable_data<T>(ctx.GetPlace());
|
|
const auto *grad = ctx.Input<framework::Tensor>("Grad");
|
|
|
|
auto p = framework::EigenVector<T>::Flatten(*param);
|
|
auto g = framework::EigenVector<T>::Flatten(*grad);
|
|
auto o = framework::EigenVector<T>::Flatten(*param_out);
|
|
auto *lr = learning_rate->data<T>();
|
|
|
|
o = p - lr[0] * g;
|
|
} else if (grad_var->IsType<framework::SelectedRows>()) {
|
|
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
|
|
// This manual optimization brings difficulty to track data dependency.
|
|
// It's better to find a more elegant solution.
|
|
PADDLE_ENFORCE_EQ(param, param_out);
|
|
const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
|
|
|
|
// for distributed training, a sparse var may be empty,
|
|
// just skip updating.
|
|
if (grad->rows().size() == 0) {
|
|
return;
|
|
}
|
|
|
|
auto grad_height = grad->height();
|
|
auto out_dims = param_out->dims();
|
|
PADDLE_ENFORCE_EQ(grad_height, out_dims[0]);
|
|
|
|
auto &grad_value = grad->value();
|
|
auto &grad_rows = grad->rows();
|
|
|
|
size_t grad_row_numel = grad_value.numel() / grad_rows.size();
|
|
PADDLE_ENFORCE_EQ(static_cast<int64_t>(grad_row_numel),
|
|
param_out->numel() / grad_height);
|
|
|
|
auto *grad_data = grad_value.data<T>();
|
|
auto *out_data = param_out->data<T>();
|
|
auto *lr = learning_rate->data<T>();
|
|
for (size_t i = 0; i < grad_rows.size(); i++) {
|
|
PADDLE_ENFORCE(grad_rows[i] < grad_height,
|
|
"Input rows index should less than height");
|
|
for (size_t j = 0; j < grad_row_numel; j++) {
|
|
out_data[grad_rows[i] * grad_row_numel + j] -=
|
|
lr[0] * grad_data[i * grad_row_numel + j];
|
|
}
|
|
}
|
|
} else {
|
|
PADDLE_THROW("Unsupported Variable Type of Grad");
|
|
}
|
|
} else if (param_var->IsType<framework::SelectedRows>()) {
|
|
PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
|
|
"when param "
|
|
"is SelectedRows, gradient should also be SelectedRows");
|
|
const auto ¶m = param_var->Get<framework::SelectedRows>();
|
|
auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
|
|
const auto &grad = grad_var->Get<framework::SelectedRows>();
|
|
|
|
// for distributed training, a sparse var may be empty,
|
|
// just skip updating.
|
|
if (grad.rows().size() == 0) {
|
|
return;
|
|
}
|
|
|
|
auto param_row_width = param.value().dims()[1];
|
|
auto grad_row_width = grad.value().dims()[1];
|
|
VLOG(4) << " param rows: " << param.rows().size()
|
|
<< " param memory rows: " << param.value().dims()[0]
|
|
<< " grad rows: " << grad.rows().size()
|
|
<< " grad memory rows: " << grad.value().dims()[0];
|
|
PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
|
|
"param_row should have the same size with grad_row");
|
|
|
|
const auto *lr = learning_rate->data<T>();
|
|
const auto *grad_data = grad.value().data<T>();
|
|
auto *out_data = param_out->mutable_value()->data<T>();
|
|
for (size_t i = 0; i < grad.rows().size(); i++) {
|
|
int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
|
|
PADDLE_ENFORCE_GE(id_index, static_cast<int64_t>(0),
|
|
"id should be in the table");
|
|
for (int64_t j = 0; j < grad_row_width; j++) {
|
|
out_data[id_index * grad_row_width + j] -=
|
|
lr[0] * grad_data[i * grad_row_width + j];
|
|
}
|
|
}
|
|
} else {
|
|
PADDLE_THROW("Unsupported Variable Type of Parameter");
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|