You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.4 KiB
76 lines
2.4 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
/*
|
|
* SplitOp.
|
|
*/
|
|
class SplitOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
VLOG(4) << "convert a fluid split op to tensorrt split layer";
|
|
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
// Declare inputs
|
|
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
|
|
auto input_dims = input->getDimensions();
|
|
int input_num = op_desc.Input("X").size();
|
|
size_t output_num = op_desc.Output("Out").size();
|
|
|
|
// Get Attrs
|
|
PADDLE_ENFORCE(input_num == 1);
|
|
int axis = boost::get<int>(op_desc.GetAttr("axis"));
|
|
std::vector<int> output_lengths =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("sections"));
|
|
PADDLE_ENFORCE(axis != 0);
|
|
if (axis < 0) {
|
|
axis += input_dims.nbDims;
|
|
} else {
|
|
axis -= 1;
|
|
}
|
|
|
|
PADDLE_ENFORCE(output_lengths.size() == output_num);
|
|
|
|
//
|
|
plugin::SplitPlugin* plugin = new plugin::SplitPlugin(axis, output_lengths);
|
|
nvinfer1::IPluginLayer* layer =
|
|
engine_->AddPlugin(&input, input_num, plugin);
|
|
|
|
std::string layer_name = "split (Output: ";
|
|
for (size_t i = 0; i < output_num; i++) {
|
|
auto output_name = op_desc.Output("Out")[i];
|
|
layer->getOutput(i)->setName(output_name.c_str());
|
|
engine_->SetITensor(output_name, layer->getOutput(i));
|
|
layer_name += output_name;
|
|
if (test_mode) {
|
|
engine_->DeclareOutput(output_name);
|
|
}
|
|
}
|
|
layer->setName((layer_name + ")").c_str());
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
REGISTER_TRT_OP_CONVERTER(split, SplitOpConverter);
|