You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
4.5 KiB
152 lines
4.5 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
|
|
#include "FullyConnectedLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
#include "paddle/math/SparseMatrix.h"
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(fc, FullyConnectedLayer);
|
|
|
|
bool FullyConnectedLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
/* initialize the weightList */
|
|
CHECK(inputLayers_.size() == parameters_.size());
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
// Option the parameters
|
|
size_t height = inputLayers_[i]->getSize();
|
|
size_t width = getSize();
|
|
|
|
// create a new weight
|
|
if (parameters_[i]->isSparse()) {
|
|
CHECK_LE(parameters_[i]->getSize(), width * height);
|
|
} else {
|
|
CHECK_EQ(parameters_[i]->getSize(), width * height);
|
|
}
|
|
Weight* w = new Weight(height, width, parameters_[i]);
|
|
|
|
// append the new weight to the list
|
|
weights_.emplace_back(w);
|
|
}
|
|
|
|
/* initialize biases_ */
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FullyConnectedLayer::prefetch() {
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
auto* sparseParam =
|
|
dynamic_cast<SparsePrefetchRowCpuMatrix*>(weights_[i]->getW().get());
|
|
if (sparseParam) {
|
|
MatrixPtr input = getInputValue(i);
|
|
sparseParam->addRows(input);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FullyConnectedLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
/* malloc memory for the output_ if necessary */
|
|
int batchSize = getInput(0).getBatchSize();
|
|
int size = getSize();
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
|
|
reserveOutput(batchSize, size);
|
|
}
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
auto input = getInput(i);
|
|
CHECK(input.value) << "The input of 'fc' layer must be matrix";
|
|
REGISTER_TIMER_INFO("FwMulTimer", getName().c_str());
|
|
i == 0 ? outV->mul(input.value, weights_[i]->getW(), 1, 0)
|
|
: outV->mul(input.value, weights_[i]->getW(), 1, 1);
|
|
}
|
|
|
|
/* add the bias-vector */
|
|
if (biases_.get() != NULL) {
|
|
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
|
outV->addBias(*(biases_->getW()), 1);
|
|
}
|
|
|
|
/* activation */ {
|
|
REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
|
|
forwardActivation();
|
|
}
|
|
}
|
|
|
|
void FullyConnectedLayer::backward(const UpdateCallback& callback) {
|
|
/* Do derivation */ {
|
|
REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
|
|
backwardActivation();
|
|
}
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
REGISTER_TIMER_INFO("BpBiasTimer", getName().c_str());
|
|
biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
|
|
|
|
/* Increasing the number of gradient */
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
bool syncFlag = hl_get_sync_flag();
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
/* Calculate the W-gradient for the current layer */
|
|
if (weights_[i]->getWGrad()) {
|
|
MatrixPtr input_T = getInputValue(i)->getTranspose();
|
|
MatrixPtr oGrad = getOutputGrad();
|
|
{
|
|
REGISTER_TIMER_INFO("GradMulTimer", getName().c_str());
|
|
weights_[i]->getWGrad()->mul(input_T, oGrad, 1, 1);
|
|
}
|
|
}
|
|
|
|
// If callback does not change value, backprop error asynchronously so that
|
|
// we can do the callback concurrently.
|
|
hl_set_sync_flag(false);
|
|
|
|
/* Calculate the input layers error */
|
|
MatrixPtr preGrad = getInputGrad(i);
|
|
if (NULL != preGrad) {
|
|
MatrixPtr weights_T = weights_[i]->getW()->getTranspose();
|
|
REGISTER_TIMER_INFO("BpMulTimer", getName().c_str());
|
|
preGrad->mul(getOutputGrad(), weights_T, 1, 1);
|
|
}
|
|
|
|
hl_set_sync_flag(syncFlag);
|
|
{
|
|
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
|
weights_[i]->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|