You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
701 lines
25 KiB
701 lines
25 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
|
|
#include "LstmLayer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/math/BaseMatrix.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
P_DECLARE_bool(prev_batch_state);
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(lstmemory, LstmLayer);
|
|
|
|
bool LstmLayer::init(const LayerMap &layerMap,
|
|
const ParameterMap ¶meterMap) {
|
|
if (!Layer::init(layerMap, parameterMap)) return false;
|
|
CHECK_EQ(1U, inputLayers_.size());
|
|
CHECK_EQ(1U, parameters_.size());
|
|
CHECK_EQ(getSize() * getSize() * 4, parameters_[0]->getSize());
|
|
CHECK_EQ(getSize() * 7, biasParameter_->getSize());
|
|
weight_.reset(new Weight(getSize(), getSize() * 4, parameters_[0]));
|
|
if (biasParameter_.get() != NULL) {
|
|
bias_.reset(new Weight(1, getSize() * 7, biasParameter_));
|
|
if (bias_->getW()) {
|
|
localBias_ = Matrix::create(nullptr, /* height= */ 1, getSize() * 4,
|
|
/* trans= */ false, useGpu_);
|
|
checkIg_ = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
checkFg_ = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
checkOg_ = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
|
|
localBias_->setData(bias_->getW()->getData());
|
|
checkIg_->setData(bias_->getW()->getData() + getSize() * 4);
|
|
checkFg_->setData(bias_->getW()->getData() + getSize() * 5);
|
|
checkOg_->setData(bias_->getW()->getData() + getSize() * 6);
|
|
}
|
|
|
|
if (bias_->getWGrad()) {
|
|
localBiasGrad_ = Matrix::create(nullptr, /* height= */ 1, getSize() * 4,
|
|
/* trans= */ false, useGpu_);
|
|
checkIgGrad_ = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
checkFgGrad_ = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
checkOgGrad_ = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
localBiasGrad_->setData(bias_->getWGrad()->getData());
|
|
checkIgGrad_->setData(bias_->getWGrad()->getData() + getSize() * 4);
|
|
checkFgGrad_->setData(bias_->getWGrad()->getData() + getSize() * 5);
|
|
checkOgGrad_->setData(bias_->getWGrad()->getData() + getSize() * 6);
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Bias should be here.";
|
|
}
|
|
reversed_ = config_.reversed();
|
|
|
|
// create IdentityActivation for using drop_rate
|
|
activation_.reset(ActivationFunction::create(""));
|
|
|
|
LstmCompute::init(config_);
|
|
useBatch_ = true;
|
|
useSeqParallel_ = false;
|
|
if (useGpu_ && (getSize() == 32 || getSize() == 64)) {
|
|
useSeqParallel_ = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LstmLayer::resetState() {
|
|
CHECK(!reversed_) << "state is not allowed for reversed lstmemory layer";
|
|
Matrix::resizeOrCreate(prevOutput_, 1, getSize(), /* trans= */ false,
|
|
useGpu_);
|
|
Matrix::resizeOrCreate(prevState_, 1, getSize(), /* trans= */ false, useGpu_);
|
|
prevOutput_->resize(0, getSize());
|
|
prevState_->resize(0, getSize());
|
|
if (FLAGS_prev_batch_state) {
|
|
useBatch_ = true;
|
|
} else {
|
|
useBatch_ = false;
|
|
}
|
|
}
|
|
|
|
void LstmLayer::setState(LayerStatePtr state) {
|
|
CHECK(state->value.size() == 2) << "two matrices are expected for LSTM state";
|
|
prevOutput_->resize(state->value[0]->getHeight(),
|
|
state->value[0]->getWidth());
|
|
prevState_->resize(state->value[1]->getHeight(), state->value[1]->getWidth());
|
|
prevOutput_->copyFrom(*(state->value[0]));
|
|
prevState_->copyFrom(*(state->value[1]));
|
|
}
|
|
|
|
LayerStatePtr LstmLayer::getState() {
|
|
LayerStatePtr res = std::make_shared<LayerState>();
|
|
if (prevOutput_->getHeight() && prevOutput_->getWidth()) {
|
|
res->value.push_back(prevOutput_->clone(0, 0, useGpu_));
|
|
res->value[0]->copyFrom(*prevOutput_);
|
|
res->value.push_back(prevState_->clone(0, 0, useGpu_));
|
|
res->value[1]->copyFrom(*prevState_);
|
|
} else {
|
|
MatrixPtr output =
|
|
Matrix::create(1, getSize(), /* trans= */ false, useGpu_);
|
|
MatrixPtr state = Matrix::create(1, getSize(), /* trans= */ false, useGpu_);
|
|
output->resize(0, getSize());
|
|
state->resize(0, getSize());
|
|
res->value.push_back(output);
|
|
res->value.push_back(state);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void LstmLayer::forward(PassType passType) {
|
|
REGISTER_TIMER_INFO("LstmFwTimer", getName().c_str());
|
|
Layer::forward(passType);
|
|
|
|
const Argument &input = getInput(0);
|
|
CHECK(input.sequenceStartPositions);
|
|
int batchSize = input.getBatchSize();
|
|
resetOutput(batchSize, getSize());
|
|
CHECK_EQ(getSize() * 4, input.value->getWidth());
|
|
size_t numSequences = input.getNumSequences();
|
|
const int *starts = input.sequenceStartPositions->getData(false);
|
|
CHECK_EQ(starts[numSequences], batchSize);
|
|
|
|
Matrix::resizeOrCreate(gate_.value,
|
|
/* height= */ batchSize, getSize() * 4,
|
|
/* trans= */ false, useGpu_);
|
|
if (prevOutput_) {
|
|
size_t prevNumSeq = useBatch_ ? numSequences : 1;
|
|
if (prevOutput_->getHeight() == 0) {
|
|
prevOutput_->resize(prevNumSeq, getSize());
|
|
prevState_->resize(prevNumSeq, getSize());
|
|
prevOutput_->zeroMem();
|
|
prevState_->zeroMem();
|
|
} else {
|
|
CHECK_EQ(prevOutput_->getHeight(), prevNumSeq)
|
|
<< "the number of sequences must be the same";
|
|
}
|
|
Matrix::resizeOrCreate(totalState_, prevState_->getHeight() + batchSize,
|
|
getSize(), /*trans*/ false, useGpu_);
|
|
state_.value = Matrix::create(nullptr, /* height= */ batchSize, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
state_.value->setData(totalState_->getData() +
|
|
prevState_->getHeight() * getSize());
|
|
} else {
|
|
Matrix::resizeOrCreate(state_.value, /* height= */ batchSize, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
}
|
|
Matrix::resizeOrCreate(preOutput_.value,
|
|
/* height= */ batchSize, getSize(), /* trans= */ false,
|
|
useGpu_);
|
|
|
|
if (!useBatch_) {
|
|
forwardSequence(batchSize, numSequences, starts, input.value);
|
|
} else {
|
|
if (!useSeqParallel_) {
|
|
forwardBatch(batchSize, numSequences, starts, input.value);
|
|
} else {
|
|
const int* starts = input.sequenceStartPositions->getData(useGpu_);
|
|
forwardSeqParallel(batchSize, numSequences, starts, input.value);
|
|
}
|
|
}
|
|
/* activation */ { forwardActivation(); }
|
|
}
|
|
|
|
void LstmLayer::backward(const UpdateCallback &callback) {
|
|
REGISTER_TIMER_INFO("LstmBwTimer", getName().c_str());
|
|
/* Do derivation */ { backwardActivation(); }
|
|
|
|
const Argument &input = getInput(0);
|
|
CHECK(input.sequenceStartPositions);
|
|
int batchSize = input.getBatchSize();
|
|
size_t numSequences = input.getNumSequences();
|
|
|
|
Matrix::resizeOrCreate(gate_.grad,
|
|
/* height= */ batchSize, getSize() * 4,
|
|
/* trans= */ false, useGpu_);
|
|
Matrix::resizeOrCreate(state_.grad,
|
|
/* height= */ batchSize, getSize(), /* trans= */ false,
|
|
useGpu_);
|
|
Matrix::resizeOrCreate(preOutput_.grad,
|
|
/* height= */ batchSize, getSize(), /* trans= */ false,
|
|
useGpu_);
|
|
state_.grad->zero();
|
|
|
|
const int *starts = input.sequenceStartPositions->getData(false);
|
|
if (!useBatch_) {
|
|
backwardSequence(batchSize, numSequences, starts, input.grad);
|
|
} else {
|
|
if (!useSeqParallel_) {
|
|
backwardBatch(batchSize, numSequences, starts, input.grad);
|
|
} else {
|
|
const int* starts = input.sequenceStartPositions->getData(useGpu_);
|
|
backwardSeqParallel(batchSize, numSequences, starts, input.grad);
|
|
}
|
|
}
|
|
|
|
if (bias_) {
|
|
bias_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
weight_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
void LstmLayer::forwardSequence(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputValue) {
|
|
REGISTER_TIMER_INFO("LstmFwSequenceTime", getName().c_str());
|
|
gate_.value->assign(*inputValue);
|
|
if (bias_) {
|
|
gate_.value->addBias(*localBias_, 1);
|
|
}
|
|
|
|
hl_lstm_value lstmValue;
|
|
lstmValue.checkIg = checkIg_->getData();
|
|
lstmValue.checkFg = checkFg_->getData();
|
|
lstmValue.checkOg = checkOg_->getData();
|
|
lstmValue.gateValue = gate_.value->getData();
|
|
lstmValue.stateValue = state_.value->getData();
|
|
lstmValue.stateActiveValue = preOutput_.value->getData();
|
|
lstmValue.outputValue = output_.value->getData();
|
|
lstmValue.prevStateValue = nullptr;
|
|
if (reversed_) {
|
|
lstmValue.gateValue += (batchSize - 1) * getSize() * 4;
|
|
lstmValue.stateValue += (batchSize - 1) * getSize();
|
|
lstmValue.stateActiveValue += (batchSize - 1) * getSize();
|
|
lstmValue.outputValue += (batchSize - 1) * getSize();
|
|
}
|
|
|
|
auto nextFrame = [&lstmValue](bool reversed, int frameSize) {
|
|
lstmValue.prevStateValue = lstmValue.stateValue;
|
|
if (!reversed) {
|
|
lstmValue.gateValue += frameSize * 4;
|
|
lstmValue.stateValue += frameSize;
|
|
lstmValue.stateActiveValue += frameSize;
|
|
lstmValue.outputValue += frameSize;
|
|
} else {
|
|
lstmValue.gateValue -= frameSize * 4;
|
|
lstmValue.stateValue -= frameSize;
|
|
lstmValue.stateActiveValue -= frameSize;
|
|
lstmValue.outputValue -= frameSize;
|
|
}
|
|
};
|
|
|
|
MatrixPtr frameGate = Matrix::create(nullptr, /* height= */ 1, getSize() * 4,
|
|
/* trans= */ false, useGpu_);
|
|
MatrixPtr frameOutput = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
|
|
if (!reversed_) {
|
|
if (prevState_) {
|
|
lstmValue.prevStateValue = prevState_->getData();
|
|
}
|
|
if (prevOutput_) {
|
|
frameGate->setData(lstmValue.gateValue);
|
|
frameGate->mul(prevOutput_, weight_->getW(), 1, 1);
|
|
}
|
|
}
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
for (size_t n = 0; n < numSequences; ++n) {
|
|
int length;
|
|
if (!reversed_) {
|
|
length = starts[n + 1] - starts[n];
|
|
} else {
|
|
length = starts[numSequences - n] - starts[numSequences - n - 1];
|
|
}
|
|
for (int l = 0; l < length; ++l) {
|
|
if (useGpu_) {
|
|
LstmCompute::forwardOneSequence<1>(lstmValue, getSize());
|
|
} else {
|
|
LstmCompute::forwardOneSequence<0>(lstmValue, getSize());
|
|
}
|
|
|
|
if (l != length - 1) {
|
|
frameOutput->setData(lstmValue.outputValue);
|
|
nextFrame(reversed_, getSize());
|
|
frameGate->setData(lstmValue.gateValue);
|
|
frameGate->mul(frameOutput, weight_->getW(), 1, 1);
|
|
}
|
|
}
|
|
if (n != numSequences - 1) {
|
|
frameOutput->setData(lstmValue.outputValue);
|
|
nextFrame(reversed_, getSize());
|
|
frameGate->setData(lstmValue.gateValue);
|
|
if (!reversed_) {
|
|
if (!prevState_) lstmValue.prevStateValue = nullptr;
|
|
if (prevOutput_) {
|
|
frameGate->mul(frameOutput, weight_->getW(), 1, 1);
|
|
}
|
|
} else {
|
|
lstmValue.prevStateValue = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!reversed_) {
|
|
if (prevState_) {
|
|
prevState_->assign(*state_.value->subMatrix(batchSize - 1, 1));
|
|
}
|
|
if (prevOutput_) {
|
|
prevOutput_->assign(*output_.value->subMatrix(batchSize - 1, 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
void LstmLayer::backwardSequence(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputGrad) {
|
|
REGISTER_TIMER_INFO("LstmBwSequenceTime", getName().c_str());
|
|
MatrixPtr weightT = weight_->getW()->getTranspose();
|
|
|
|
hl_lstm_value lstmValue;
|
|
hl_lstm_grad lstmGrad;
|
|
lstmValue.checkIg = checkIg_->getData();
|
|
lstmValue.checkFg = checkFg_->getData();
|
|
lstmValue.checkOg = checkOg_->getData();
|
|
lstmValue.gateValue = gate_.value->getData();
|
|
lstmValue.stateValue = state_.value->getData();
|
|
lstmValue.stateActiveValue = preOutput_.value->getData();
|
|
lstmValue.outputValue = nullptr;
|
|
|
|
if (bias_->getWGrad()) {
|
|
lstmGrad.checkIgGrad = checkIgGrad_->getData();
|
|
lstmGrad.checkFgGrad = checkFgGrad_->getData();
|
|
lstmGrad.checkOgGrad = checkOgGrad_->getData();
|
|
} else {
|
|
lstmGrad.checkIgGrad = nullptr;
|
|
lstmGrad.checkFgGrad = nullptr;
|
|
lstmGrad.checkOgGrad = nullptr;
|
|
}
|
|
lstmGrad.gateGrad = gate_.grad->getData();
|
|
lstmGrad.stateGrad = state_.grad->getData();
|
|
lstmGrad.stateActiveGrad = nullptr;
|
|
lstmGrad.outputGrad = output_.grad->getData();
|
|
|
|
if (!reversed_) {
|
|
lstmValue.gateValue += (batchSize - 1) * getSize() * 4;
|
|
lstmGrad.gateGrad += (batchSize - 1) * getSize() * 4;
|
|
lstmValue.stateValue += (batchSize - 1) * getSize();
|
|
lstmGrad.stateGrad += (batchSize - 1) * getSize();
|
|
lstmValue.stateActiveValue += (batchSize - 1) * getSize();
|
|
lstmGrad.outputGrad += (batchSize - 1) * getSize();
|
|
lstmValue.prevStateValue = lstmValue.stateValue - getSize();
|
|
lstmGrad.prevStateGrad = lstmGrad.stateGrad - getSize();
|
|
} else {
|
|
lstmValue.prevStateValue = lstmValue.stateValue + getSize();
|
|
lstmGrad.prevStateGrad = lstmGrad.stateGrad + getSize();
|
|
}
|
|
|
|
auto nextFrame = [&lstmValue, &lstmGrad](bool reversed, int frameSize) {
|
|
if (reversed) {
|
|
lstmValue.gateValue += frameSize * 4;
|
|
lstmGrad.gateGrad += frameSize * 4;
|
|
lstmValue.stateValue += frameSize;
|
|
lstmGrad.stateGrad += frameSize;
|
|
lstmValue.stateActiveValue += frameSize;
|
|
lstmGrad.outputGrad += frameSize;
|
|
lstmValue.prevStateValue = lstmValue.stateValue + frameSize;
|
|
lstmGrad.prevStateGrad = lstmGrad.stateGrad + frameSize;
|
|
} else {
|
|
lstmValue.gateValue -= frameSize * 4;
|
|
lstmGrad.gateGrad -= frameSize * 4;
|
|
lstmValue.stateValue -= frameSize;
|
|
lstmGrad.stateGrad -= frameSize;
|
|
lstmValue.stateActiveValue -= frameSize;
|
|
lstmGrad.outputGrad -= frameSize;
|
|
lstmValue.prevStateValue = lstmValue.stateValue - frameSize;
|
|
lstmGrad.prevStateGrad = lstmGrad.stateGrad - frameSize;
|
|
}
|
|
};
|
|
|
|
MatrixPtr frameGate = Matrix::create(nullptr, /* height= */ 1, getSize() * 4,
|
|
/* trans= */ false, useGpu_);
|
|
MatrixPtr frameOutput = Matrix::create(nullptr, /* height= */ 1, getSize(),
|
|
/* trans= */ false, useGpu_);
|
|
|
|
{
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
for (size_t n = 0; n < numSequences; ++n) {
|
|
int length;
|
|
int start;
|
|
if (reversed_) {
|
|
length = starts[n + 1] - starts[n];
|
|
start = starts[n];
|
|
} else {
|
|
length = starts[numSequences - n] - starts[numSequences - n - 1];
|
|
start = starts[numSequences - n - 1];
|
|
}
|
|
for (int l = 0; l < length; ++l) {
|
|
if (l == length - 1) {
|
|
lstmValue.prevStateValue = nullptr;
|
|
lstmGrad.prevStateGrad = nullptr;
|
|
}
|
|
if (useGpu_) {
|
|
LstmCompute::backwardOneSequence<1>(lstmValue, lstmGrad, getSize());
|
|
} else {
|
|
LstmCompute::backwardOneSequence<0>(lstmValue, lstmGrad, getSize());
|
|
}
|
|
if (l != length - 1) {
|
|
frameGate->setData(lstmGrad.gateGrad);
|
|
nextFrame(reversed_, getSize());
|
|
frameOutput->setData(lstmGrad.outputGrad);
|
|
frameOutput->mul(frameGate, weightT, 1, 1);
|
|
} else {
|
|
nextFrame(reversed_, getSize());
|
|
}
|
|
}
|
|
|
|
if (weight_->getWGrad()) {
|
|
if (!reversed_) {
|
|
weight_->getWGrad()->mul(
|
|
output_.value->subMatrix(start, length - 1)->getTranspose(),
|
|
gate_.grad->subMatrix(start + 1, length - 1), 1, 1);
|
|
} else {
|
|
weight_->getWGrad()->mul(
|
|
output_.value->subMatrix(start + 1, length - 1)->getTranspose(),
|
|
gate_.grad->subMatrix(start, length - 1), 1, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inputGrad) {
|
|
inputGrad->add(*gate_.grad);
|
|
}
|
|
if (bias_ && bias_->getWGrad()) {
|
|
localBiasGrad_->collectBias(*gate_.grad, 1);
|
|
}
|
|
}
|
|
|
|
void LstmLayer::forwardBatch(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputValue) {
|
|
REGISTER_TIMER_INFO("LstmFwBatchTime", getName().c_str());
|
|
|
|
hl_lstm_value lstmValue;
|
|
lstmValue.checkIg = checkIg_->getData();
|
|
lstmValue.checkFg = checkFg_->getData();
|
|
lstmValue.checkOg = checkOg_->getData();
|
|
|
|
if (!batchValue_) {
|
|
batchValue_.reset(new SequenceToBatch(useGpu_));
|
|
}
|
|
batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_,
|
|
prevOutput_ ? true : false);
|
|
|
|
batchValue_->resizeOrCreate(*output_.value);
|
|
batchValue_->copy(*inputValue, *gate_.value, /* seq2batch */ true);
|
|
if (bias_) {
|
|
gate_.value->addBias(*localBias_, 1);
|
|
}
|
|
|
|
{
|
|
int numBatch = batchValue_->getNumBatch();
|
|
int batchSize = 0;
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
if (prevState_) {
|
|
lstmValue.prevStateValue = totalState_->getData();
|
|
} else {
|
|
lstmValue.prevStateValue = nullptr;
|
|
}
|
|
for (int n = 0; n < numBatch; n++) {
|
|
MatrixPtr outputValue = batchValue_->getBatchValue(n);
|
|
MatrixPtr gateValue = batchValue_->getBatchValue(*gate_.value, n);
|
|
batchSize = outputValue->getHeight();
|
|
|
|
if (n != 0) {
|
|
MatrixPtr batch1 = batchValue_->getBatchValue(n - 1, batchSize);
|
|
gateValue->mul(batch1, weight_->getW(), 1, 1);
|
|
} else if (prevOutput_) {
|
|
Matrix::resizeOrCreate(prevBatchOutput2_, gateValue->getHeight(),
|
|
getSize(), false, useGpu_);
|
|
batchValue_->prevOutput2Batch(*prevOutput_, *prevBatchOutput2_);
|
|
gateValue->mul(prevBatchOutput2_, weight_->getW(), 1, 1);
|
|
|
|
batchValue_->prevOutput2Batch(*prevState_,
|
|
*totalState_->subMatrix(0, numSequences));
|
|
}
|
|
|
|
lstmValue.gateValue = gateValue->getData();
|
|
lstmValue.outputValue = outputValue->getData();
|
|
lstmValue.stateValue =
|
|
batchValue_->getBatchValue(*state_.value, n)->getData();
|
|
lstmValue.stateActiveValue =
|
|
batchValue_->getBatchValue(*preOutput_.value, n)->getData();
|
|
{
|
|
if (useGpu_) {
|
|
LstmCompute::forwardBatch<1>(lstmValue, getSize(), batchSize);
|
|
} else {
|
|
LstmCompute::forwardBatch<0>(lstmValue, getSize(), batchSize);
|
|
}
|
|
}
|
|
lstmValue.prevStateValue = lstmValue.stateValue;
|
|
}
|
|
}
|
|
{
|
|
REGISTER_TIMER_INFO("batchToSeq", getName().c_str());
|
|
batchValue_->copyBackSeq(*output_.value);
|
|
}
|
|
if (prevOutput_) {
|
|
getPrevBatchOutput(numSequences);
|
|
getPrevBatchState(numSequences);
|
|
}
|
|
}
|
|
|
|
void LstmLayer::getPrevBatchOutput(size_t numSequences) {
|
|
prevOutput_->resize(numSequences, getSize());
|
|
batchValue_->getSeqOutputFromBatch(*prevOutput_,
|
|
*batchValue_->getBatchValue());
|
|
}
|
|
|
|
void LstmLayer::getPrevBatchState(size_t numSequences) {
|
|
prevState_->resize(numSequences, getSize());
|
|
batchValue_->getSeqOutputFromBatch(*prevState_, *state_.value);
|
|
}
|
|
|
|
void LstmLayer::backwardBatch(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputGrad) {
|
|
REGISTER_TIMER_INFO("LstmBwBatchTime", getName().c_str());
|
|
|
|
hl_lstm_value lstmValue;
|
|
lstmValue.checkIg = checkIg_->getData();
|
|
lstmValue.checkFg = checkFg_->getData();
|
|
lstmValue.checkOg = checkOg_->getData();
|
|
|
|
hl_lstm_grad lstmGrad;
|
|
lstmGrad.stateActiveGrad = preOutput_.grad->getData();
|
|
|
|
if (bias_->getWGrad()) {
|
|
lstmGrad.checkIgGrad = checkIgGrad_->getData();
|
|
lstmGrad.checkFgGrad = checkFgGrad_->getData();
|
|
lstmGrad.checkOgGrad = checkOgGrad_->getData();
|
|
} else {
|
|
lstmGrad.checkIgGrad = nullptr;
|
|
lstmGrad.checkFgGrad = nullptr;
|
|
lstmGrad.checkOgGrad = nullptr;
|
|
}
|
|
|
|
if (!batchGrad_) {
|
|
batchGrad_.reset(new SequenceToBatch(useGpu_));
|
|
}
|
|
batchGrad_->shareIndexWith(*batchValue_);
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("seqToBatch", getName().c_str());
|
|
batchGrad_->copyFromSeq(*output_.grad);
|
|
}
|
|
|
|
{
|
|
MatrixPtr weightT = weight_->getW()->getTranspose();
|
|
int numBatch = batchGrad_->getNumBatch();
|
|
int batchSize = 0;
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
for (int n = (int)numBatch - 1; n >= 0; n--) {
|
|
MatrixPtr outputGrad = batchGrad_->getBatchValue(n);
|
|
MatrixPtr gateGrad = batchGrad_->getBatchValue(*gate_.grad, n);
|
|
|
|
lstmValue.gateValue =
|
|
batchGrad_->getBatchValue(*gate_.value, n)->getData();
|
|
lstmValue.stateValue =
|
|
batchGrad_->getBatchValue(*state_.value, n)->getData();
|
|
lstmValue.stateActiveValue =
|
|
batchGrad_->getBatchValue(*preOutput_.value, n)->getData();
|
|
lstmGrad.stateGrad =
|
|
batchGrad_->getBatchValue(*state_.grad, n)->getData();
|
|
lstmGrad.gateGrad = gateGrad->getData();
|
|
lstmGrad.outputGrad = outputGrad->getData();
|
|
{
|
|
batchSize = outputGrad->getHeight();
|
|
if (n != 0) {
|
|
lstmValue.prevStateValue =
|
|
batchGrad_->getBatchValue(*state_.value, n - 1)->getData();
|
|
lstmGrad.prevStateGrad =
|
|
batchGrad_->getBatchValue(*state_.grad, n - 1)->getData();
|
|
} else {
|
|
if (prevState_) {
|
|
lstmValue.prevStateValue = totalState_->getData();
|
|
lstmGrad.prevStateGrad = nullptr;
|
|
} else {
|
|
lstmValue.prevStateValue = nullptr;
|
|
lstmGrad.prevStateGrad = nullptr;
|
|
}
|
|
}
|
|
if (useGpu_) {
|
|
LstmCompute::backwardBatch<1>(lstmValue, lstmGrad,
|
|
getSize(), batchSize);
|
|
} else {
|
|
LstmCompute::backwardBatch<0>(lstmValue, lstmGrad,
|
|
getSize(), batchSize);
|
|
}
|
|
}
|
|
|
|
if (n != 0) {
|
|
MatrixPtr tmp = batchGrad_->getBatchValue(n - 1, batchSize);
|
|
tmp->mul(gateGrad, weightT, 1, 1);
|
|
}
|
|
|
|
if (n != 0 && weight_->getWGrad()) {
|
|
/* backward weight */
|
|
MatrixPtr outputValue = batchValue_->getBatchValue(n - 1, batchSize);
|
|
weight_->getWGrad()->mul(outputValue->getTranspose(), gateGrad, 1, 1);
|
|
} else if (prevOutput_ && weight_->getWGrad()) {
|
|
weight_->getWGrad()->mul(prevBatchOutput2_->getTranspose(), gateGrad, 1,
|
|
1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inputGrad) {
|
|
batchGrad_->add(*inputGrad, *gate_.grad, /* seq2batch */ false);
|
|
}
|
|
if (bias_ && bias_->getWGrad()) {
|
|
localBiasGrad_->collectBias(*gate_.grad, /* scale */ 1);
|
|
}
|
|
}
|
|
|
|
void LstmLayer::forwardSeqParallel(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputValue) {
|
|
REGISTER_TIMER_INFO("LstmFwSeqParallelTime", getName().c_str());
|
|
gate_.value->assign(*inputValue);
|
|
if (bias_) {
|
|
gate_.value->addBias(*localBias_, /* scale */ 1);
|
|
}
|
|
|
|
real *gateValue = gate_.value->getData();
|
|
real *stateValue = state_.value->getData();
|
|
real *outputValue = output_.value->getData();
|
|
real *preOutputValue = preOutput_.value->getData();
|
|
real *checkIg = checkIg_->getData();
|
|
real *checkFg = checkFg_->getData();
|
|
real *checkOg = checkOg_->getData();
|
|
real *weight = weight_->getW()->getData();
|
|
hl_lstm_parallel_forward(
|
|
gateValue, stateValue, preOutputValue, outputValue, checkIg, checkFg,
|
|
checkOg, weight, starts, getSize(), numSequences, reversed_, activeNode_,
|
|
activeGate_, activeState_);
|
|
}
|
|
|
|
void LstmLayer::backwardSeqParallel(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputGrad) {
|
|
REGISTER_TIMER_INFO("LstmBwSeqParallelTime", getName().c_str());
|
|
real *gateValue = gate_.value->getData();
|
|
real *gateGrad = gate_.grad->getData();
|
|
real *stateValue = state_.value->getData();
|
|
real *stateGrad = state_.grad->getData();
|
|
real *preOutputValue = preOutput_.value->getData();
|
|
real *preOutputGrad = preOutput_.grad->getData();
|
|
real *checkIg = checkIg_->getData();
|
|
real *checkFg = checkFg_->getData();
|
|
real *checkOg = checkOg_->getData();
|
|
real *outputGrad = output_.grad->getData();
|
|
real *weight = weight_->getW()->getData();
|
|
|
|
real *checkIgGrad;
|
|
real *checkFgGrad;
|
|
real *checkOgGrad;
|
|
if (bias_->getWGrad()) {
|
|
checkIgGrad = checkIgGrad_->getData();
|
|
checkFgGrad = checkFgGrad_->getData();
|
|
checkOgGrad = checkOgGrad_->getData();
|
|
} else {
|
|
checkIgGrad = nullptr;
|
|
checkFgGrad = nullptr;
|
|
checkOgGrad = nullptr;
|
|
}
|
|
|
|
hl_lstm_parallel_backward_data(
|
|
gateValue, gateGrad, stateValue, stateGrad, preOutputValue, preOutputGrad,
|
|
outputGrad, checkIg, checkIgGrad, checkFg, checkFgGrad, checkOg,
|
|
checkOgGrad, weight, starts, getSize(), numSequences, reversed_,
|
|
activeNode_, activeGate_, activeState_);
|
|
|
|
if (inputGrad) {
|
|
inputGrad->add(*gate_.grad);
|
|
}
|
|
if (bias_ && bias_->getWGrad()) {
|
|
localBiasGrad_->collectBias(*gate_.grad, 1);
|
|
}
|
|
|
|
real *outputValue = output_.value->getData();
|
|
if (weight_->getWGrad()) {
|
|
real *weightGrad = weight_->getWGrad()->getData();
|
|
hl_lstm_parallel_backward_weight(weightGrad, outputValue, gateGrad,
|
|
starts, getSize(), batchSize,
|
|
numSequences, reversed_);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|