You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
2.5 KiB
88 lines
2.5 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MaxOutLayer.h"
|
|
#include "hl_gpu.h"
|
|
#include "hl_cnn.h"
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(maxout, MaxOutLayer);
|
|
|
|
size_t MaxOutLayer::getSize() {
|
|
const MaxOutConfig& maxoutConf = config_.inputs(0).maxout_conf();
|
|
imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
|
|
imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
|
|
if (imgSizeH_ == 0) {
|
|
imgSizeH_ = maxoutConf.img_size_y();
|
|
}
|
|
if (imgSizeW_ == 0) {
|
|
imgSizeW_ = maxoutConf.img_size_x();
|
|
}
|
|
|
|
featLen_ = imgSizeH_ * imgSizeW_;
|
|
size_t layerSize = featLen_ * outputChannels_;
|
|
|
|
getOutput().setFrameHeight(imgSizeH_);
|
|
getOutput().setFrameWidth(imgSizeW_);
|
|
|
|
return layerSize;
|
|
}
|
|
|
|
bool MaxOutLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
/* the size of inputs for maxout-layer is 1 */
|
|
CHECK_EQ(config_.inputs_size(), 1);
|
|
|
|
const MaxOutConfig& conf = config_.inputs(0).maxout_conf();
|
|
groups_ = conf.groups();
|
|
channels_ = conf.channels();
|
|
CHECK_EQ(channels_ % groups_, 0UL);
|
|
outputChannels_ = channels_ / groups_;
|
|
|
|
return true;
|
|
}
|
|
|
|
void MaxOutLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
/* malloc memory for the output_ if necessary */
|
|
/* note: one sample correspond to one column */
|
|
size_t batchSize = getInput(0).getBatchSize();
|
|
size_t size = getSize();
|
|
resetOutput(batchSize, size);
|
|
MatrixPtr inputV = getInputValue(0);
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
IVector::resizeOrCreate(maxoutId_, size * batchSize, useGpu_);
|
|
outV->maxoutForward(*inputV, *maxoutId_, outputChannels_, groups_);
|
|
}
|
|
|
|
void MaxOutLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
|
|
/* Do derivation */
|
|
MatrixPtr inputG = getInputGrad(0);
|
|
MatrixPtr outG = getOutputGrad();
|
|
|
|
if (inputG) {
|
|
inputG->maxoutBackward(*outG, *maxoutId_, outputChannels_, groups_);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|