You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
5.1 KiB
179 lines
5.1 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
|
|
#include "paddle/utils/Stat.h"
|
|
#include "MixedLayer.h"
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mixed, MixedLayer);
|
|
|
|
bool MixedLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
if (!Layer::init(layerMap, parameterMap)) return false;
|
|
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
projections_.resize(inputLayers_.size());
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
if (config_.inputs(i).has_proj_conf()) {
|
|
projections_[i].reset(Projection::create(config_.inputs(i).proj_conf(),
|
|
parameters_[i], useGpu_));
|
|
} else {
|
|
CHECK(!parameters_[i]) << "should no parameters for operators";
|
|
}
|
|
}
|
|
for (auto& operator_conf : config_.operator_confs()) {
|
|
for (auto& input_index : operator_conf.input_indices()) {
|
|
CHECK(!config_.inputs(input_index).has_proj_conf());
|
|
}
|
|
operators_.emplace_back(Operator::create(operator_conf, useGpu_));
|
|
}
|
|
|
|
/* initialize biases_ */
|
|
if (biasParameter_.get() != NULL) {
|
|
sharedBias_ = config_.shared_biases();
|
|
size_t psize = config_.bias_size();
|
|
biases_ = std::unique_ptr<Weight>(
|
|
new Weight(1, psize, biasParameter_));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void MixedLayer::prefetch() {
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
if (projections_[i]) {
|
|
projections_[i]->prefetch(&getInput(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MixedLayer::resetState() {
|
|
for (auto& proj : projections_) {
|
|
if (proj) {
|
|
proj->resetState();
|
|
}
|
|
}
|
|
}
|
|
|
|
void MixedLayer::setState(LayerStatePtr state) {
|
|
CHECK(projectionStateMatrixSize_.size() == projections_.size())
|
|
<< "projection size mis-match";
|
|
|
|
int start = 0;
|
|
LayerStatePtr statePtr = std::make_shared<LayerState>();
|
|
for (int i = 0; i < (int)projectionStateMatrixSize_.size(); i++) {
|
|
if (projectionStateMatrixSize_[i] > 0) {
|
|
statePtr->value.clear();
|
|
for (int j = start; j < start + projectionStateMatrixSize_[i]; j++) {
|
|
statePtr->value.push_back(state->value[j]);
|
|
}
|
|
projections_[i]->setState(statePtr);
|
|
start += projectionStateMatrixSize_[i];
|
|
}
|
|
}
|
|
CHECK((int)state->value.size() == start) << "state matrix size mis-match";
|
|
}
|
|
|
|
// Return state which consists of all projections states
|
|
LayerStatePtr MixedLayer::getState() {
|
|
bool init = projectionStateMatrixSize_.size() == 0;
|
|
LayerStatePtr res = std::make_shared<LayerState>();
|
|
for (int i = 0; i < (int)projections_.size(); i++) {
|
|
LayerStatePtr statePtr =
|
|
projections_[i] ? projections_[i]->getState() : nullptr;
|
|
int stateSize = statePtr == nullptr ? 0 : statePtr->value.size();
|
|
if (init) {
|
|
projectionStateMatrixSize_.push_back(stateSize);
|
|
} else {
|
|
CHECK(projectionStateMatrixSize_[i] == stateSize)
|
|
<< "state matrix size mis-match";
|
|
}
|
|
if (statePtr != nullptr) {
|
|
for (auto& matrixPtr : statePtr->value) {
|
|
res->value.push_back(matrixPtr);
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void MixedLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
int batchSize = getInput(0).getBatchSize();
|
|
int size = getSize();
|
|
{
|
|
REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
|
|
resetOutput(batchSize, size);
|
|
}
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
if (projections_[i]) {
|
|
projections_[i]->forward(&getInput(i), &output_, passType);
|
|
}
|
|
}
|
|
|
|
std::vector<const Argument*> ins;
|
|
for (auto& op : operators_) {
|
|
ins.clear();
|
|
for (auto& input_index : op->getConfig().input_indices()) {
|
|
ins.push_back(&getInput(input_index));
|
|
}
|
|
op->forward(ins, &output_, passType);
|
|
}
|
|
|
|
/* add the bias-vector */
|
|
if (biases_.get() != NULL) {
|
|
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
|
outV->addBias(*(biases_->getW()), 1, sharedBias_);
|
|
}
|
|
|
|
/* activation */ {
|
|
REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
|
|
forwardActivation();
|
|
}
|
|
}
|
|
|
|
void MixedLayer::backward(const UpdateCallback& callback) {
|
|
/* Do activation */ {
|
|
REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
|
|
backwardActivation();
|
|
}
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
REGISTER_TIMER_INFO("BpBiasTimer", getName().c_str());
|
|
biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBias_);
|
|
|
|
/* Increasing the number of gradient */
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
if (projections_[i]) {
|
|
projections_[i]->backward(callback);
|
|
}
|
|
}
|
|
|
|
for (auto& op : operators_) {
|
|
op->backward();
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|