You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/sequence_nest_rnn_multi_inp...

77 lines
2.6 KiB

#edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
######################## data source ################################
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
test_list=None,
module='rnn_data_provider',
obj='process_subseq2')
settings(batch_size=2, learning_rate=0.01)
######################## network configure ################################
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 3
data = data_layer(name="word", size=dict_dim)
emb = embedding_layer(input=data, size=word_dim)
# This hierachical RNN is designed to be equivalent to the simple RNN in
# sequence_rnn.conf
def outer_step(wid, x):
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
def inner_step(y, wid):
z = embedding_layer(input=wid, size=word_dim)
inner_mem = memory(name="inner_rnn_state",
size=hidden_dim,
boot_layer=outer_mem)
out = fc_layer(input=[y, z, inner_mem],
size=hidden_dim,
act=TanhActivation(),
bias_attr=True,
name="inner_rnn_state")
return out
inner_rnn_output = recurrent_group(
step=inner_step,
name="inner",
input=[x, wid])
last = last_seq(input=inner_rnn_output, name="outer_rnn_state")
# "return last" should also work. But currently RecurrentGradientMachine
# does not handle it, and will report error: In hierachical RNN, all out
# links should be from sequences now.
return inner_rnn_output
out = recurrent_group(
name="outer",
step=outer_step,
input=[SubsequenceInput(data), SubsequenceInput(emb)])
rep = last_seq(input=out)
prob = fc_layer(size=label_dim,
input=rep,
act=SoftmaxActivation(),
bias_attr=True)
outputs(classification_cost(input=prob,
label=data_layer(name="label", size=label_dim)))