You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/test_NetworkCompare.cpp

266 lines
8.9 KiB

/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#undef PADDLE_DISABLE_TIMER
#include <paddle/utils/PythonUtil.h>
#include <cstdlib>
#include <algorithm>
#include <gtest/gtest.h>
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/Stat.h"
#include "TestUtil.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DEFINE_bool(use_label, true, "input label or sequence label");
P_DEFINE_bool(static_para, false, "static parameter");
struct DataIn {
std::vector<Argument> inArgs;
std::vector<MatrixPtr> outGrads;
std::vector<VectorPtr> paraValues;
};
struct DataOut {
std::vector<MatrixPtr> outValues;
std::vector<VectorPtr> paraGrads;
};
void initArgument(DataIn& data, const std::string& configPath,
bool useGpu = FLAGS_use_gpu) {
TrainerConfigHelper config(configPath);
size_t batchSize = config.getOptConfig().batch_size();
for (const auto& layer_name : config.getModelConfig().input_layer_names()) {
auto layer_config = std::find_if(config.getModelConfig().layers().begin(),
config.getModelConfig().layers().end(),
[=](const LayerConfig& layer_config) {
return layer_config.name() == layer_name;
});
CHECK(layer_config != config.getModelConfig().layers().end());
size_t layerSize = layer_config->size();
Argument arg;
arg.value = Matrix::create(batchSize, layerSize, false, useGpu);
arg.grad = Matrix::create(batchSize, layerSize, false, useGpu);
arg.value->randomizeUniform();
arg.value->add(-0.5);
arg.value->sigmoid(*arg.value);
arg.grad->zeroMem();
if (FLAGS_use_label) {
arg.ids = VectorT<int>::create(batchSize, useGpu);
arg.ids->rand(layerSize);
}
generateSequenceStartPositions(batchSize, arg.sequenceStartPositions);
data.inArgs.push_back(arg);
}
for (const auto& layer_name : config.getModelConfig().output_layer_names()) {
auto layer_config = std::find_if(config.getModelConfig().layers().begin(),
config.getModelConfig().layers().end(),
[=](const LayerConfig& layer_config) {
return layer_config.name() == layer_name;
});
CHECK(layer_config != config.getModelConfig().layers().end());
size_t layerSize = layer_config->size();
MatrixPtr grad = Matrix::create(batchSize, layerSize, false, useGpu);
grad->randomizeUniform();
data.outGrads.push_back(grad);
}
for (const auto& para_config : config.getModelConfig().parameters()) {
VectorPtr value = Vector::create(para_config.size(), useGpu);
value->randnorm(0, 2);
data.paraValues.push_back(value);
}
}
void calcGradient(DataIn& in, DataOut& out, const std::string& configPath) {
*ThreadLocalRand::getSeed() = 0;
srand(0);
Trainer trainer;
auto config = std::make_shared<TrainerConfigHelper>(configPath);
trainer.init(config, false);
std::vector<ParameterPtr> parameters;
vector<Argument> outArgs;
auto gradientMachine = trainer.getGradientMachine();
parameters = gradientMachine->getParameters();
if (FLAGS_static_para) {
for (size_t i = 0; i < parameters.size(); i++) {
parameters[i]->getBuf(PARAMETER_VALUE)->one();
}
} else {
for (size_t i = 0; i < in.paraValues.size(); i++) {
parameters[i]->getBuf(PARAMETER_VALUE)->copyFrom(*in.paraValues[i]);
}
}
gradientMachine->start(trainer.getConfig(), nullptr);
gradientMachine->forward(in.inArgs, &outArgs, PASS_TRAIN);
for (size_t i = 0; i < in.outGrads.size(); i++) {
// If the all the layers in the config have no parameters, also
// not set NeedGradient(), the outArgs[i] will be nullptr.
outArgs[i].grad->copyFrom(*in.outGrads[i]);
}
gradientMachine->backward();
for (size_t i = 0; i < in.outGrads.size(); i++) {
MatrixPtr value =
Matrix::create(outArgs[i].value->getHeight(),
outArgs[i].value->getWidth(), false, false);
value->copyFrom(*outArgs[i].value);
out.outValues.push_back(value);
}
for (size_t i = 0; i < in.paraValues.size(); i++) {
VectorPtr grad = Vector::create(
parameters[i]->getBuf(PARAMETER_GRADIENT)->getSize(), false);
grad->copyFrom(*parameters[i]->getBuf(PARAMETER_GRADIENT));
out.paraGrads.push_back(grad);
}
for (int i = 0; i < 20; i++) {
REGISTER_TIMER("forward");
gradientMachine->forward(in.inArgs, &outArgs, PASS_TRAIN);
}
for (int i = 0; i < 20; i++) {
REGISTER_TIMER("backward");
gradientMachine->backward();
}
gradientMachine->finish();
}
void checkBuffer(real* A, const char* desA, real* B, const char* desB,
size_t len, size_t width = 1) {
int nNum = 0;
for (size_t i = 0; i < len; ++i) {
real diff = fabs(A[i] - B[i]);
if (diff > 0.0f &&
diff / std::max(fabs(A[i]), fabs(B[i])) > FLAGS_checkgrad_eps) {
nNum++;
LOG(INFO) << "Row: " << i / width << ", " << desA << " : " << A[i]
<< " " << desB << " : " << B[i];
}
}
EXPECT_EQ(0, nNum);
}
void compareGradient(DataOut& outA, DataOut& outB) {
LOG(INFO) << "------------------------------"
<< " Check Network Output "
<< "------------------------------";
for (size_t i = 0; i < outA.outValues.size(); ++i) {
LOG(INFO) << "OUTPUT VALUE: " << i;
checkBuffer(outA.outValues[i]->getData(), "network A output",
outB.outValues[i]->getData(), "network B output",
outA.outValues[i]->getElementCnt(),
outA.outValues[i]->getWidth());
}
if (!FLAGS_static_para) {
LOG(INFO) << "------------------------------"
<< " Check Parameters "
<< "------------------------------";
for (size_t i = 0; i < outA.paraGrads.size(); ++i) {
LOG(INFO) << "PARAMETER GRADIENT: " << i;
checkBuffer(outA.paraGrads[i]->getData(), "Network A",
outB.paraGrads[i]->getData(), "Network B",
outA.paraGrads[i]->getSize());
}
}
}
void compareNetwork(const std::string& config_file_a,
const std::string& config_file_b) {
DataIn in;
initArgument(in, config_file_a);
DataOut dataA;
calcGradient(in, dataA, config_file_a);
LOG(INFO) << "forwardBackward of Network A is finished";
globalStat.printSegTimerStatus();
globalStat.reset();
LOG(INFO) << "\n\n";
DataOut dataB;
calcGradient(in, dataB, config_file_b);
LOG(INFO) << "forwardBackward of the Network B is finished";
globalStat.printSegTimerStatus();
globalStat.reset();
LOG(INFO) << "\n\n";
compareGradient(dataA, dataB);
}
TEST(Compare, concat_dotmul) {
std::string config_file_a = "./gserver/tests/concat_dotmul_a.conf";
std::string config_file_b = "./gserver/tests/concat_dotmul_b.conf";
compareNetwork(config_file_a, config_file_b);
}
TEST(Compare, concat_fullmatrix) {
std::string config_file_a = "./gserver/tests/concat_fullmatrix_a.conf";
std::string config_file_b = "./gserver/tests/concat_fullmatrix_b.conf";
compareNetwork(config_file_a, config_file_b);
}
TEST(Compare, concat_table) {
std::string config_file_a = "./gserver/tests/concat_table_a.conf";
std::string config_file_b = "./gserver/tests/concat_table_b.conf";
compareNetwork(config_file_a, config_file_b);
}
#ifndef PADDLE_ONLY_CPU
TEST(Compare, img_pool) {
std::string config_file_a = "./gserver/tests/img_pool_a.conf";
std::string config_file_b = "./gserver/tests/img_pool_b.conf";
bool useGpu = FLAGS_use_gpu;
FLAGS_use_gpu = true;
compareNetwork(config_file_a, config_file_b);
FLAGS_use_gpu = useGpu;
}
TEST(Compare, img_conv) {
std::string config_file_a = "./gserver/tests/img_conv_a.conf";
std::string config_file_b = "./gserver/tests/img_conv_b.conf";
bool useGpu = FLAGS_use_gpu;
FLAGS_use_gpu = true;
compareNetwork(config_file_a, config_file_b);
FLAGS_use_gpu = useGpu;
}
#endif
P_DEFINE_string(config_file_a, "", "config of one network to compare");
P_DEFINE_string(config_file_b, "", "config of another network to compare");
TEST(Compare, network) {
if (FLAGS_config_file_a != "" && FLAGS_config_file_b != "") {
compareNetwork(FLAGS_config_file_a, FLAGS_config_file_b);
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
paddle::initMain(argc, argv);
initPython(argc, argv);
int ret = RUN_ALL_TESTS();
return ret;
}