You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/layers/tensor.py

131 lines
4.0 KiB

from ..layer_helper import LayerHelper
__all__ = [
'create_tensor', 'cast', 'concat', 'sums', 'assign',
'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
helper = LayerHelper("create_tensor", **locals())
return helper.create_variable(name=helper.name, dtype=dtype)
def cast(x, dtype, main_program=None):
"""
This function takes in the input with input_dtype
and casts it to the output_dtype as the output.
"""
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='cast',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'in_dtype': x.dtype,
'out_dtype': out.dtype})
return out
def concat(input, axis, main_program=None, startup_program=None):
"""
This function concats the input along the axis mentioned
and returns that as the output.
"""
helper = LayerHelper('concat', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='concat',
inputs={'X': input},
outputs={'Out': [out]},
attrs={'axis': axis})
return out
def sums(input, out=None, main_program=None, startup_program=None):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
"""
helper = LayerHelper('sum', **locals())
if out is None:
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
return out
def assign(input, output, main_program=None, startup_program=None):
helper = LayerHelper('assign', **locals())
helper.append_op(
type='scale',
inputs={'X': [input]},
outputs={'Out': [output]},
attrs={'scale': 1.0})
return output
def fill_constant(shape,
dtype,
value,
out=None,
main_program=None,
startup_program=None):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.
"""
helper = LayerHelper("fill_constant", **locals())
if out is None:
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant',
inputs={},
outputs={'Out': [out]},
attrs={'shape': shape,
'dtype': out.dtype,
'value': float(value)})
out.stop_gradient = True
return out
def fill_constant_batch_size_like(input,
shape,
dtype,
value,
input_dim_idx=0,
output_dim_idx=0,
main_program=None,
startup_program=None):
helper = LayerHelper("fill_constant_batch_size_like", **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant_batch_size_like',
inputs={'Input': input},
outputs={'Out': [out]},
attrs={
'shape': shape,
'dtype': out.dtype,
'value': float(value),
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx
})
out.stop_gradient = True
return out
def ones(shape, dtype, main_program=None):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 1.0.
"""
return fill_constant(value=1.0, **locals())
def zeros(shape, dtype, main_program=None):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 0.0.
"""
return fill_constant(value=0.0, **locals())