You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
6.4 KiB
161 lines
6.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/context_project.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename Place, typename T>
|
|
class SequenceConvKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in = context.Input<LoDTensor>("X");
|
|
auto* out = context.Output<LoDTensor>("Out");
|
|
auto filter = *context.Input<Tensor>("Filter");
|
|
|
|
out->mutable_data<T>(context.GetPlace());
|
|
context.ShareLoD("X", "Out");
|
|
|
|
int context_start = context.Attr<int>("contextStart");
|
|
int context_length = context.Attr<int>("contextLength");
|
|
int context_stride = context.Attr<int>("contextStride");
|
|
bool padding_trainable = context.Attr<bool>("paddingTrainable");
|
|
|
|
PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
|
|
"Only support one level sequence now.");
|
|
|
|
const Tensor* padding_data = nullptr;
|
|
if (padding_trainable) {
|
|
padding_data = context.Input<Tensor>("PaddingData");
|
|
}
|
|
|
|
int up_pad = std::max(0, -context_start);
|
|
int down_pad = std::max(0, context_start + context_length - 1);
|
|
int sequence_width = static_cast<int>(in->dims()[1]);
|
|
|
|
framework::DDim col_shape = {in->dims()[0],
|
|
context_length * sequence_width};
|
|
Tensor col;
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
// Because if padding_trainable is false, padding data should be zeros.
|
|
math::SetConstant<Place, T> set_zero;
|
|
set_zero(context.device_context(), &col, static_cast<T>(0));
|
|
|
|
math::ContextProjectFunctor<Place, T> seq_project_functor;
|
|
|
|
seq_project_functor(context.device_context(), *in, *padding_data,
|
|
padding_trainable, context_start, context_length,
|
|
context_stride, up_pad, down_pad, &col);
|
|
|
|
math::matmul<Place, T>(context.device_context(), col, false, filter, false,
|
|
static_cast<T>(1.0), out, static_cast<T>(0.0));
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class SequenceConvGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
|
|
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto* filter_g = context.Output<Tensor>(framework::GradVarName("Filter"));
|
|
auto* padding_data_g =
|
|
context.Output<Tensor>(framework::GradVarName("PaddingData"));
|
|
auto* in = context.Input<LoDTensor>("X");
|
|
auto* filter = context.Input<Tensor>("Filter");
|
|
|
|
int context_start = context.Attr<int>("contextStart");
|
|
int context_length = context.Attr<int>("contextLength");
|
|
int context_stride = context.Attr<int>("contextStride");
|
|
bool padding_trainable = context.Attr<bool>("paddingTrainable");
|
|
|
|
PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
|
|
"Only support one level sequence now.");
|
|
auto lod_g_level_0 = in->lod()[0];
|
|
|
|
int up_pad = std::max(0, -context_start);
|
|
int down_pad = std::max(0, context_start + context_length - 1);
|
|
int sequence_width = static_cast<int>(in->dims()[1]);
|
|
|
|
math::SetConstant<Place, T> set_zero;
|
|
// use col_shape in the im2col calculation
|
|
framework::DDim col_shape = {in->dims()[0],
|
|
sequence_width * context_length};
|
|
Tensor col;
|
|
|
|
if (in_g || filter_g || (padding_trainable && padding_data_g)) {
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
// Because if padding_trainable is false, padding data should be zeros.
|
|
set_zero(context.device_context(), &col, static_cast<T>(0));
|
|
math::matmul<Place, T>(context.device_context(), *out_g, false, *filter,
|
|
true, T(1.0), &col, T(1.0));
|
|
}
|
|
math::ContextProjectFunctor<Place, T> seq_project_functor;
|
|
math::ContextProjectGradFunctor<Place, T> seq_project_grad_functor;
|
|
|
|
if (in_g) {
|
|
in_g->mutable_data<T>(context.GetPlace());
|
|
in_g->set_lod(in->lod());
|
|
set_zero(context.device_context(), in_g, static_cast<T>(0));
|
|
|
|
seq_project_grad_functor(context.device_context(), *in_g,
|
|
padding_trainable, context_start, context_length,
|
|
context_stride, up_pad, down_pad, false, true,
|
|
padding_data_g, &col);
|
|
}
|
|
|
|
if (padding_trainable && padding_data_g) {
|
|
padding_data_g->mutable_data<T>(context.GetPlace());
|
|
set_zero(context.device_context(), padding_data_g, static_cast<T>(0));
|
|
|
|
LoDTensor* input = const_cast<LoDTensor*>(in);
|
|
seq_project_grad_functor(context.device_context(), *input,
|
|
padding_trainable, context_start, context_length,
|
|
context_stride, up_pad, down_pad, true, false,
|
|
padding_data_g, &col);
|
|
}
|
|
|
|
if (filter_g) {
|
|
filter_g->mutable_data<T>(context.GetPlace());
|
|
set_zero(context.device_context(), filter_g, static_cast<T>(0));
|
|
|
|
Tensor filter_grad = *filter_g;
|
|
LoDTensor out_grad = *out_g;
|
|
|
|
const Tensor* padding_data = nullptr;
|
|
if (padding_trainable) {
|
|
padding_data = context.Input<Tensor>("PaddingData");
|
|
}
|
|
|
|
seq_project_functor(context.device_context(), *in, *padding_data,
|
|
padding_trainable, context_start, context_length,
|
|
context_stride, up_pad, down_pad, &col);
|
|
|
|
math::matmul<Place, T>(context.device_context(), col, true, out_grad,
|
|
false, T(1.0), &filter_grad, T(1.0));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|