You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.9 KiB
137 lines
4.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/expand_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class ExpandOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
|
|
|
|
std::vector<int> expand_times =
|
|
ctx->Attrs().Get<std::vector<int>>("expand_times");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
|
|
PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()), expand_times.size(),
|
|
"The number of Attr(expand_times)'s value must be equal "
|
|
"to the rank of Input(X).");
|
|
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
|
"The rank of Input(X) must not be greater than 6.");
|
|
|
|
std::vector<int64_t> out_shape(x_dims.size());
|
|
for (size_t i = 0; i < expand_times.size(); ++i) {
|
|
PADDLE_ENFORCE_GE(expand_times[i], 1,
|
|
"Each value of Attr(expand_times) should not be "
|
|
"less than 1.");
|
|
out_shape[i] = x_dims[i] * expand_times[i];
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
|
|
if (out_shape[0] == x_dims[0]) {
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
}
|
|
};
|
|
|
|
class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]."
|
|
"X is the input tensor to be expanded.");
|
|
AddOutput("Out",
|
|
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]."
|
|
"The rank of Output(Out) is same as Input(X) except that each "
|
|
"dimension size of Output(Out) is equal to corresponding "
|
|
"dimension size of Input(X) multiplying corresponding value of "
|
|
"Attr(expand_times).");
|
|
AddAttr<std::vector<int>>("expand_times",
|
|
"Expand times number for each dimension.");
|
|
AddComment(R"DOC(
|
|
Expand operator tiles the input by given times number. You should set times
|
|
number for each dimension by providing attribute 'expand_times'. The rank of X
|
|
should be in [1, 6]. Please notice that size of 'expand_times' must be same with
|
|
X's rank. Following is a using case:
|
|
|
|
Input(X) is a 3-D tensor with shape [2, 3, 1]:
|
|
|
|
[
|
|
[[1], [2], [3]],
|
|
[[4], [5], [6]]
|
|
]
|
|
|
|
Attr(expand_times): [1, 2, 2]
|
|
|
|
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
|
|
|
|
[
|
|
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
|
|
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
|
|
]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ExpandGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
std::vector<int> expand_times =
|
|
ctx->Attrs().Get<std::vector<int>>("expand_times");
|
|
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
for (size_t i = 0; i < expand_times.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i],
|
|
"Each dimension size of Input(Out@GRAD) should be "
|
|
"equal to multiplication of crroresponding dimension "
|
|
"size of Input(X) and Attr(expand_times) value.");
|
|
}
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad,
|
|
ops::ExpandGradOp);
|
|
REGISTER_OP_CPU_KERNEL(expand,
|
|
ops::ExpandKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
expand_grad, ops::ExpandGradKernel<paddle::platform::CPUPlace, float>);
|