You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.5 KiB
153 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/lookup_table_op.h"
|
|
#include "paddle/platform/assert.h"
|
|
#include "paddle/platform/cuda_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
|
|
__global__ void LookupTable(T* output, const T* table, const int64_t* ids,
|
|
const int64_t N, const int64_t K, const int64_t D) {
|
|
int idx = threadIdx.x;
|
|
int idy = blockIdx.x + threadIdx.y * GridDimX;
|
|
|
|
while (idy < K) {
|
|
int64_t id = ids[idy];
|
|
PADDLE_ASSERT(id >= 0);
|
|
PADDLE_ASSERT(id < N);
|
|
T* out = output + idy * D;
|
|
const T* tab = table + id * D;
|
|
for (int i = idx; i < D; i += BlockDimX) {
|
|
out[i] = tab[i];
|
|
}
|
|
idy += BlockDimY * GridDimX;
|
|
}
|
|
}
|
|
|
|
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
|
|
__global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
|
|
const int64_t N, const int64_t K,
|
|
const int64_t D) {
|
|
int idx = threadIdx.x;
|
|
int idy = blockIdx.x + threadIdx.y * GridDimX;
|
|
|
|
while (idy < K) {
|
|
int id = ids[idy];
|
|
PADDLE_ASSERT(id >= 0);
|
|
PADDLE_ASSERT(id < N);
|
|
const T* out = output + idy * D;
|
|
T* tab = table + id * D;
|
|
for (int i = idx; i < D; i += BlockDimX) {
|
|
paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
|
|
}
|
|
idy += BlockDimY * GridDimX;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class LookupTableCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* table_t = context.Input<LoDTensor>("W");
|
|
auto* ids_t = context.Input<LoDTensor>("Ids");
|
|
auto* output_t = context.Output<LoDTensor>("Out");
|
|
|
|
size_t N = table_t->dims()[0];
|
|
size_t D = table_t->dims()[1];
|
|
size_t K = ids_t->numel();
|
|
auto* ids = ids_t->data<int64_t>();
|
|
auto* table = table_t->data<T>();
|
|
auto* output = output_t->mutable_data<T>(context.GetPlace());
|
|
|
|
dim3 threads(128, 8);
|
|
dim3 grids(8, 1);
|
|
LookupTable<
|
|
T, 128, 8,
|
|
8><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
|
|
output, table, ids, N, K, D);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
bool is_sparse = context.Attr<bool>("is_sparse");
|
|
if (is_sparse) {
|
|
auto* ids = context.Input<LoDTensor>("Ids");
|
|
auto* table = context.Input<LoDTensor>("W");
|
|
auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
|
|
|
|
auto* ids_data = ids->data<int64_t>();
|
|
auto ids_dim = ids->dims();
|
|
|
|
auto stream = context.cuda_device_context().stream();
|
|
// copy GPU memory to CPU pinned memory
|
|
framework::Vector<int64_t> new_rows;
|
|
new_rows.resize(ids_dim[0]);
|
|
auto gpu_place = boost::get<platform::GPUPlace>(context.GetPlace());
|
|
|
|
memory::Copy(platform::CPUPlace(), new_rows.data(), gpu_place, ids_data,
|
|
ids_dim[0] * sizeof(int64_t), stream);
|
|
|
|
d_table->set_rows(new_rows);
|
|
|
|
auto* d_table_value = d_table->mutable_value();
|
|
d_table_value->Resize({ids_dim[0], table->dims()[1]});
|
|
d_table_value->mutable_data<T>(context.GetPlace());
|
|
|
|
auto* d_table_data = d_table_value->data<T>();
|
|
auto* d_output_data = d_output->data<T>();
|
|
PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
|
|
memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
|
|
d_output->numel() * sizeof(T), stream);
|
|
|
|
} else {
|
|
auto ids_t = context.Input<LoDTensor>("Ids");
|
|
auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
|
|
|
|
int N = d_table_t->dims()[0];
|
|
int D = d_table_t->dims()[1];
|
|
int K = ids_t->numel();
|
|
const int64_t* ids = ids_t->data<int64_t>();
|
|
const T* d_output = d_output_t->data<T>();
|
|
T* d_table = d_table_t->mutable_data<T>(context.GetPlace());
|
|
|
|
auto t = framework::EigenVector<T>::Flatten(*d_table_t);
|
|
t.device(context.GetEigenDevice<platform::GPUPlace>()) =
|
|
t.constant(static_cast<T>(0));
|
|
|
|
dim3 threads(128, 8);
|
|
dim3 grids(8, 1);
|
|
LookupTableGrad<
|
|
T, 128, 8,
|
|
8><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
|
|
d_table, d_output, ids, N, K, D);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_GPU_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
|
|
ops::LookupTableCUDAKernel<double>);
|
|
REGISTER_OP_GPU_KERNEL(lookup_table_grad, ops::LookupTableGradCUDAKernel<float>,
|
|
ops::LookupTableGradCUDAKernel<double>);
|