You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.9 KiB
106 lines
3.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/lstm_unit_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LstmUnitOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("C_prev"),
|
|
"Input(C_prev) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("C"),
|
|
"Output(C) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("H"),
|
|
"Output(H) of LSTM should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto c_prev_dims = ctx->GetInputDim("C_prev");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], c_prev_dims[0],
|
|
"Batch size of inputs and states must be equal");
|
|
PADDLE_ENFORCE_EQ(x_dims[1], c_prev_dims[1] * 4,
|
|
"Dimension of FC should equal to prev state * 4");
|
|
|
|
int b_size = c_prev_dims[0]; // batch size
|
|
int s_dim = c_prev_dims[1]; // state dim
|
|
ctx->SetOutputDim("C", {b_size, s_dim});
|
|
ctx->SetOutputDim("H", {b_size, s_dim});
|
|
}
|
|
};
|
|
|
|
class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
LstmUnitOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "FC input before the non-linear activation.");
|
|
AddInput(
|
|
"C_prev",
|
|
"The cell state tensor of last time-step in the Lstm Unit operator.");
|
|
AddOutput("C", "The cell tensor of Lstm Unit operator.");
|
|
AddOutput("H", "The hidden state tensor of Lstm Unit operator.");
|
|
AddAttr<float>("forget_bias",
|
|
"(float, default 0.0) "
|
|
"The forget bias of Lstm Unit.")
|
|
.SetDefault(0.0);
|
|
AddComment(R"DOC(
|
|
Lstm Unit Operator
|
|
|
|
Equation:
|
|
|
|
$$
|
|
i, f, o, j = split(X) \\
|
|
C = C_{prev} * sigm(f + forget\_bias) + sigm(i) * tanh(j) \\
|
|
H = C * sigm(o)
|
|
$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LstmUnitGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("C")),
|
|
"Input(C@GRAD) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("H")),
|
|
"Input(H@GRAD) should not be null");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim(framework::GradVarName("C_prev"),
|
|
ctx->GetInputDim("C_prev"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(lstm_unit, ops::LstmUnitOp, ops::LstmUnitOpMaker, lstm_unit_grad,
|
|
ops::LstmUnitGradOp);
|
|
REGISTER_OP_CPU_KERNEL(lstm_unit,
|
|
ops::LstmUnitKernel<paddle::platform::CPUPlace, float>,
|
|
ops::LstmUnitKernel<paddle::platform::CPUPlace, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
lstm_unit_grad, ops::LstmUnitGradKernel<paddle::platform::CPUPlace, float>,
|
|
ops::LstmUnitGradKernel<paddle::platform::CPUPlace, double>);
|