You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
5.0 KiB
124 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/margin_rank_loss_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class MarginRankLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
// input check
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
auto x1_dims = ctx->GetInputDim("X1");
|
|
auto x2_dims = ctx->GetInputDim("X2");
|
|
PADDLE_ENFORCE(
|
|
(label_dims == x1_dims) && (x1_dims == x2_dims) &&
|
|
(label_dims.size() == 2) && (label_dims[1] == 1),
|
|
"All inputs must be 2-D tensor with shape [batch_size x 1].");
|
|
ctx->SetOutputDim("Activated", label_dims);
|
|
ctx->SetOutputDim("Out", label_dims);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
MarginRankLossOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X1",
|
|
"(2-D tensor with shape [batch_size x 1]) The score for "
|
|
"one item X1 to be ranked, from pairwise ranking model.");
|
|
AddInput("X2",
|
|
"(2-D tensor with shape [batch_size x 1]) The score for "
|
|
"another item X2 to be ranked, from pairwise ranking model.");
|
|
AddInput("Label",
|
|
"(2-D tensor with shape [batch_size x 1]) "
|
|
"The label indicating X1 ranked higher than X2 or not, "
|
|
"can only be +1 or -1.");
|
|
AddOutput("Activated",
|
|
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
|
|
"to indicate whether each element of Output(Out) is activated.")
|
|
.AsIntermediate();
|
|
AddOutput("Out",
|
|
"(2-D tensor with shape [batch_size x 1]) "
|
|
"The output loss of MarginRankLoss operator.");
|
|
AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
|
|
.SetDefault(static_cast<T>(0));
|
|
AddComment(R"DOC(
|
|
MarginRankLoss Operator.
|
|
|
|
This operator measures the loss given a pair of training sample
|
|
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
|
|
indicating X1 is ranked higher than `X2` and `Label = -1` otherwise. The loss
|
|
is calculated as:
|
|
|
|
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
|
|
|
|
The attribute `margin` here helps make the predictions more robust.
|
|
Denote the item ranked higher as the positive sample, otherwise the negative
|
|
sample. If the score of the two samples satisfies
|
|
|
|
$positive sample - negative sample < margin$
|
|
|
|
the pair of samples will contribute to the final loss, which will backpropagate
|
|
and train the ranking model to enlarge the difference between the two scores.
|
|
|
|
For batch input with size `batch_size`, `X1`, `X2` and `Label`
|
|
all have the same shape [batch_size x 1].
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MarginRankLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Activated"),
|
|
"Intermediate(Activated) shouldn't be null.");
|
|
auto dims = ctx->GetInputDim("Label");
|
|
ctx->SetOutputDim(framework::GradVarName("X1"), dims);
|
|
ctx->SetOutputDim(framework::GradVarName("X2"), dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
|
|
ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
|
|
ops::MarginRankLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
margin_rank_loss,
|
|
ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
margin_rank_loss_grad,
|
|
ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);
|