You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
3.1 KiB
105 lines
3.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import random
|
|
import six
|
|
|
|
|
|
def np_partial_concat(inputs, start, length):
|
|
assert (len(inputs[0].shape) == 2)
|
|
size = inputs[0].shape[1]
|
|
assert (start >= -size and start < size)
|
|
|
|
if start < 0:
|
|
start += size
|
|
if length < 0:
|
|
length = size - start
|
|
assert (size >= start + length)
|
|
|
|
elems = []
|
|
for elem in inputs:
|
|
assert (elem.shape == inputs[0].shape)
|
|
elems.append(elem[:, start:start + length])
|
|
res = np.concatenate(elems, axis=1)
|
|
return np.concatenate(elems, axis=1)
|
|
|
|
|
|
class TestPartialConcatOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "partial_concat"
|
|
self.init_kernel_type()
|
|
self.init_para()
|
|
self.var_names = [
|
|
'x' + str(num) for num in six.moves.range(self.var_num)
|
|
]
|
|
self.vars = [np.random.random((self.batch_size, self.column)).astype(self.dtype)\
|
|
for num in six.moves.range(self.var_num) ]
|
|
self.inputs = {'X': list(zip(self.var_names, self.vars))}
|
|
self.attrs = {'start_index': self.start_index, 'length': self.length}
|
|
y = np_partial_concat(self.vars[:], self.start_index, self.length)
|
|
self.outputs = {'Out': y}
|
|
|
|
def init_kernel_type(self):
|
|
self.dtype = np.float64
|
|
|
|
def init_para(self):
|
|
self.batch_size = random.randint(10, 20)
|
|
self.column = random.randint(101, 200)
|
|
self.start_index = random.randint(0, self.column - 1)
|
|
self.length = -1
|
|
self.var_num = random.randint(1, 3)
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
for var_name in self.var_names:
|
|
self.check_grad([var_name], 'Out')
|
|
|
|
|
|
class TestPartialConcatOp2(TestPartialConcatOp):
|
|
def init_para(self):
|
|
self.batch_size = random.randint(1, 10)
|
|
self.column = random.randint(101, 200)
|
|
self.start_index = -5
|
|
self.length = -1
|
|
self.var_num = 3
|
|
|
|
|
|
class TestPartialConcatOp3(TestPartialConcatOp):
|
|
def init_para(self):
|
|
self.batch_size = random.randint(1, 10)
|
|
self.column = random.randint(101, 200)
|
|
self.start_index = 10
|
|
self.length = 20
|
|
self.var_num = 2
|
|
|
|
|
|
class TestPartialConcatOp4(TestPartialConcatOp):
|
|
def init_para(self):
|
|
self.batch_size = random.randint(1, 10)
|
|
self.column = random.randint(101, 200)
|
|
self.start_index = -1
|
|
self.length = -1
|
|
self.var_num = 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|