You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/anakin/convert/conv2d_fusion.cc

131 lines
6.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/anakin/convert/conv2d_fusion.h"
#include <algorithm>
#include <memory>
#include <vector>
#include "paddle/fluid/inference/anakin/convert/helper.h"
using anakin::PTuple;
namespace paddle {
namespace inference {
namespace anakin {
template <typename TargetT, ::anakin::Precision PrecisionT>
void Conv2dFusionOpConverter<TargetT, PrecisionT>::operator()(
const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc,
const framework::Scope &scope, bool test_mode) {
framework::OpDesc op_desc(op, nullptr);
PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1UL);
PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1UL);
PADDLE_ENFORCE_EQ(op_desc.Input("Bias").size(), 1UL);
PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1UL);
auto input_name = op_desc.Input("Input").front();
auto output_name = op_desc.Output("Output").front();
auto op_name = op_desc.Type() + ":" + op_desc.Output("Output").front();
this->engine_->AddOp(op_name, "Convolution", {input_name}, {output_name});
auto *filter_v = scope.FindVar(op_desc.Input("Filter").front());
PADDLE_ENFORCE_NOT_NULL(filter_v);
auto weight_tensor = tensor_from_var(*filter_v, platform::CPUPlace());
auto weight_shape = framework::vectorize2int(weight_tensor->dims());
auto *b_v = scope.FindVar(op_desc.Input("Bias").front());
PADDLE_ENFORCE_NOT_NULL(b_v);
PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL);
const int filter_h = weight_tensor->dims()[2];
const int filter_w = weight_tensor->dims()[3];
auto filter_num = weight_tensor->dims()[0];
this->engine_->template AddOpAttr<int>(op_name, "filter_num", filter_num);
this->engine_->template AddOpAttr<PTuple<int>>(op_name, "kernel_size",
{filter_h, filter_w});
auto strides = boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
this->engine_->template AddOpAttr<PTuple<int>>(op_name, "strides", strides);
auto paddings = boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
this->engine_->template AddOpAttr<PTuple<int>>(op_name, "padding", paddings);
auto dilations = boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
this->engine_->template AddOpAttr<PTuple<int>>(op_name, "dilation_rate",
dilations);
const int groups = boost::get<int>(op_desc.GetAttr("groups"));
this->engine_->AddOpAttr(op_name, "group", groups);
this->engine_->AddOpAttr(op_name, "axis", 1);
this->engine_->AddOpAttr(op_name, "bias_term", true);
::anakin::saber::Shape anakin_shape(weight_shape);
bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
if (enable_int8) {
const float int8_range = 127.;
float in_scale = boost::get<float>(op_desc.GetAttr("input_scale"));
float weight_scale = boost::get<float>(op_desc.GetAttr("weight_scale"));
auto *weight1 = ::anakin::graph::GraphGlobalMem<TargetT>::Global()
.template new_block<::anakin::AK_INT8>(anakin_shape);
float *weight_data = weight_tensor->data<float>();
std::vector<char> weight_int8;
int weight_num = weight_tensor->numel();
for (int i = 0; i < weight_tensor->numel(); i++) {
bool is_valid_int8 =
((weight_data[i] >= -128) && (weight_data[i] <= 127));
PADDLE_ENFORCE(is_valid_int8,
"We are in anakin subgraph int8 mode, the weight of conv "
"should be in range [-128, 127]");
weight_int8.push_back(static_cast<char>(weight_data[i]));
}
memcpy(static_cast<void *>(weight1->h_tensor().mutable_data()),
static_cast<void *>(weight_int8.data()), sizeof(char) * weight_num);
weight1->d_tensor().set_shape(anakin_shape);
weight1->d_tensor().copy_from(weight1->h_tensor());
this->engine_->AddOpAttr(op_name, "weight_1", *weight1);
this->engine_->Graph()->SetOpPrec(op_name, ::anakin::AK_INT8);
this->engine_->Graph()->SetWeightsScale(op_name,
{weight_scale / int8_range}, false);
this->engine_->AddTensorScale(input_name, in_scale / int8_range);
} else {
auto weight_tensor = tensor_from_var(*filter_v, platform::CPUPlace());
auto weight_shape = framework::vectorize2int(weight_tensor->dims());
auto *weight1 = pblock_from_tensor<TargetT>(*weight_tensor, weight_shape);
this->engine_->AddOpAttr(op_name, "weight_1", *weight1);
auto weight2 = pblock_from_var<TargetT>(*b_v);
this->engine_->AddOpAttr(op_name, "weight_2", *weight2);
}
}
} // namespace anakin
} // namespace inference
} // namespace paddle
#ifdef PADDLE_WITH_CUDA
using conv2d_fusion_nv_fp32 =
::paddle::inference::anakin::Conv2dFusionOpConverter<
::anakin::saber::NV, ::anakin::Precision::FP32>;
using conv2d_fusion_nv_int8 =
::paddle::inference::anakin::Conv2dFusionOpConverter<
::anakin::saber::NV, ::anakin::Precision::INT8>;
REGISTER_CUDA_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_nv_fp32);
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_nv_int8);
#endif
using conv2d_fusion_cpu_fp32 =
::paddle::inference::anakin::Conv2dFusionOpConverter<
::anakin::saber::X86, ::anakin::Precision::FP32>;
using conv2d_fusion_cpu_int8 =
::paddle::inference::anakin::Conv2dFusionOpConverter<
::anakin::saber::X86, ::anakin::Precision::INT8>;
REGISTER_CPU_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_cpu_fp32);
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_cpu_int8);