You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/anakin/convert/density_prior_box.cc

133 lines
5.6 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/anakin/convert/density_prior_box.h"
#include <algorithm>
#include <map>
#include <vector>
using anakin::PTuple;
namespace paddle {
namespace inference {
namespace anakin {
template <typename TargetT, ::anakin::Precision PrecisionT>
void DensityPriorBoxOpConverter<TargetT, PrecisionT>::operator()(
const framework::proto::OpDesc& op, const framework::BlockDesc& block_desc,
const framework::Scope& scope, bool test_mode) {
framework::OpDesc op_desc(op, nullptr);
auto input_name = op_desc.Input("Input").front();
auto image_name = op_desc.Input("Image").front();
auto output_name = op_desc.Output("Boxes").front();
auto op_type = op_desc.Type();
auto op_name = op_type + ":" + op_desc.Output("Boxes").front();
// only for density_prior_box
std::vector<float> fixed_sizes = {};
std::vector<float> fixed_ratios = {};
std::vector<int> densities = {};
std::vector<float> min_sizes = {};
std::vector<float> max_sizes = {};
std::vector<float> aspect_ratios = {};
bool is_clip = false;
bool is_flip = false;
if (op_type == "density_prior_box") {
fixed_sizes =
boost::get<std::vector<float>>(op_desc.GetAttr("fixed_sizes"));
fixed_ratios =
boost::get<std::vector<float>>(op_desc.GetAttr("fixed_ratios"));
densities = boost::get<std::vector<int>>(op_desc.GetAttr("densities"));
is_clip = boost::get<bool>(op_desc.GetAttr("clip"));
} else if (op_type == "prior_box") {
min_sizes = boost::get<std::vector<float>>(op_desc.GetAttr("min_sizes"));
max_sizes = boost::get<std::vector<float>>(op_desc.GetAttr("max_sizes"));
aspect_ratios =
boost::get<std::vector<float>>(op_desc.GetAttr("aspect_ratios"));
is_clip = boost::get<bool>(op_desc.GetAttr("clip"));
is_flip = boost::get<bool>(op_desc.GetAttr("flip"));
}
std::vector<float> dens;
for (auto& ele : densities) {
dens.push_back(static_cast<float>(ele));
}
auto variances = boost::get<std::vector<float>>(op_desc.GetAttr("variances"));
// lack img_h, img_w
auto step_h = boost::get<float>(op_desc.GetAttr("step_h"));
auto step_w = boost::get<float>(op_desc.GetAttr("step_w"));
auto offset = boost::get<float>(op_desc.GetAttr("offset"));
PTuple<std::string> t_order;
t_order.push_back("MIN");
t_order.push_back("COM");
t_order.push_back("MAX");
std::vector<float> temp_v = {};
this->engine_->AddOp(op_name, "PriorBox", {input_name, image_name},
{output_name});
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "min_size",
min_sizes);
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "max_size",
max_sizes);
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "aspect_ratio",
aspect_ratios);
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "fixed_size",
fixed_sizes);
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "fixed_ratio",
fixed_ratios);
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "density", dens);
this->engine_->AddOpAttr(op_name, "is_flip", is_flip);
this->engine_->AddOpAttr(op_name, "is_clip", is_clip);
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "variance",
variances);
this->engine_->AddOpAttr(op_name, "img_h", static_cast<int>(0));
this->engine_->AddOpAttr(op_name, "img_w", static_cast<int>(0));
this->engine_->AddOpAttr(op_name, "step_h", step_h);
this->engine_->AddOpAttr(op_name, "step_w", step_w);
this->engine_->AddOpAttr(op_name, "offset", offset);
this->engine_->template AddOpAttr<PTuple<std::string>>(op_name, "order",
t_order);
}
} // namespace anakin
} // namespace inference
} // namespace paddle
#ifdef PADDLE_WITH_CUDA
using ds_pr_nv_fp32 = ::paddle::inference::anakin::DensityPriorBoxOpConverter<
::anakin::saber::NV, ::anakin::Precision::FP32>;
using ds_pr_nv_int8 = ::paddle::inference::anakin::DensityPriorBoxOpConverter<
::anakin::saber::NV, ::anakin::Precision::INT8>;
REGISTER_CUDA_ANAKIN_OP_CONVERTER(density_prior_box, ds_pr_nv_fp32);
REGISTER_CUDA_ANAKIN_OP_CONVERTER(prior_box, ds_pr_nv_fp32);
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(density_prior_box, ds_pr_nv_int8);
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(prior_box, ds_pr_nv_int8);
#endif
using ds_pr_cpu_fp32 = ::paddle::inference::anakin::DensityPriorBoxOpConverter<
::anakin::saber::X86, ::anakin::Precision::FP32>;
using ds_pr_cpu_int8 = ::paddle::inference::anakin::DensityPriorBoxOpConverter<
::anakin::saber::X86, ::anakin::Precision::INT8>;
REGISTER_CPU_ANAKIN_OP_CONVERTER(density_prior_box, ds_pr_cpu_fp32);
REGISTER_CPU_ANAKIN_OP_CONVERTER(prior_box, ds_pr_cpu_fp32);
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(density_prior_box, ds_pr_cpu_int8);
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(prior_box, ds_pr_cpu_int8);