You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
4.5 KiB
103 lines
4.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/anakin/convert/elementwise.h"
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using anakin::PTuple;
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace anakin {
|
|
|
|
template <typename TargetT, ::anakin::Precision PrecisionT>
|
|
void ElementwiseAddOpConverter<TargetT, PrecisionT>::operator()(
|
|
const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc,
|
|
const framework::Scope &scope, bool test_mode) {
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);
|
|
PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
|
|
|
|
auto x_name = op_desc.Input("X").front();
|
|
auto y_name = op_desc.Input("Y").front();
|
|
auto out_name = op_desc.Output("Out").front();
|
|
auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front();
|
|
|
|
this->engine_->AddOp(op_name, "Eltwise", {x_name, y_name}, {out_name});
|
|
std::string elementwise_type = "Add";
|
|
this->engine_->template AddOpAttr<std::string>(op_name, "type",
|
|
elementwise_type);
|
|
std::vector<float> coeff = {1.0, 1.0};
|
|
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "coeff", coeff);
|
|
}
|
|
|
|
template <typename TargetT, ::anakin::Precision PrecisionT>
|
|
void ElementwiseMulOpConverter<TargetT, PrecisionT>::operator()(
|
|
const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc,
|
|
const framework::Scope &scope, bool test_mode) {
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);
|
|
PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
|
|
|
|
auto x_name = op_desc.Input("X").front();
|
|
auto y_name = op_desc.Input("Y").front();
|
|
auto out_name = op_desc.Output("Out").front();
|
|
auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front();
|
|
|
|
this->engine_->AddOp(op_name, "Eltwise", {x_name, y_name}, {out_name});
|
|
std::string elementwise_type = "Prod";
|
|
this->engine_->template AddOpAttr<std::string>(op_name, "type",
|
|
elementwise_type);
|
|
std::vector<float> coeff = {1.0, 1.0};
|
|
this->engine_->template AddOpAttr<PTuple<float>>(op_name, "coeff", coeff);
|
|
}
|
|
|
|
} // namespace anakin
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
using elet_nv_fp32 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
|
|
::anakin::saber::NV, ::anakin::Precision::FP32>;
|
|
using elet_nv_int8 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
|
|
::anakin::saber::NV, ::anakin::Precision::INT8>;
|
|
using eletmul_nv_fp32 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
|
|
::anakin::saber::NV, ::anakin::Precision::FP32>;
|
|
using eletmul_nv_int8 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
|
|
::anakin::saber::NV, ::anakin::Precision::INT8>;
|
|
|
|
REGISTER_CUDA_ANAKIN_OP_CONVERTER(elementwise_add, elet_nv_fp32);
|
|
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(elementwise_add, elet_nv_int8);
|
|
REGISTER_CUDA_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_nv_fp32);
|
|
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_nv_int8);
|
|
|
|
#endif
|
|
using elet_cpu_fp32 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
|
|
::anakin::saber::X86, ::anakin::Precision::FP32>;
|
|
using elet_cpu_int8 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
|
|
::anakin::saber::X86, ::anakin::Precision::INT8>;
|
|
using eletmul_cpu_fp32 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
|
|
::anakin::saber::X86, ::anakin::Precision::FP32>;
|
|
using eletmul_cpu_int8 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
|
|
::anakin::saber::X86, ::anakin::Precision::INT8>;
|
|
|
|
REGISTER_CPU_ANAKIN_OP_CONVERTER(elementwise_add, elet_cpu_fp32);
|
|
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(elementwise_add, elet_cpu_int8);
|
|
REGISTER_CPU_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_cpu_fp32);
|
|
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_cpu_int8);
|