You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_sample_logits_op.py

108 lines
4.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import collections
import numpy as np
from op_test import OpTest
class TestSampleLogitsOp(OpTest):
def setUp(self):
self.op_type = "sample_logits"
self.dtype = np.float64
self.use_mkldnn = False
bs = 2
K = 20
NT = 10
S = 5
Samples = np.random.random([bs, NT + S]).astype('int64')
Probabilities = np.random.random([bs, NT + S]).astype('float64')
LogitsDim = np.array([bs, K], dtype=np.int64)
LabelsDim = np.array([bs, NT], dtype=np.int64)
SampledLogits = np.random.random([bs, NT + S]).astype('float64')
SampledLabels = np.random.random([bs, NT]).astype('int64')
self.bs = bs
self.K = K
self.NT = NT
self.S = S
Labels = np.array(list(range(self.NT)) * self.bs).astype('int64')
self.Labels = Labels.reshape(self.bs, -1)
self.Logits = np.random.random([self.bs, self.K]).astype('float64')
self.inputs = {"Logits": self.Logits, "Labels": self.Labels}
self.fetch_list = [
'Samples', 'Probabilities', 'SampledLogits', 'SampledLabels'
]
self.outputs = collections.OrderedDict(
(('Samples', Samples), ('Probabilities', Probabilities),
('LogitsDim', LogitsDim), ('LabelsDim', LabelsDim),
('SampledLogits', SampledLogits), ('SampledLabels',
SampledLabels)))
self.attrs = {'num_samples': self.S}
def test_check_output(self):
places = self._get_places()
for p in places:
(Samples, Probabilities, SampledLogits,
SampledLabels) = [np.array(o) for o in self.calc_output(p)]
assert Samples.dtype == np.int64, \
"Samples dtype is {}, not int64".format(Samples.dtype)
assert Probabilities.dtype == np.float64, \
"Probabilities dtype is {}, not float64".format(
Probabilities.dtype)
assert SampledLogits.dtype == np.float64, \
"SampledLogits dtype is {}, not float64".format(
SampledLogits.dtype)
assert SampledLabels.dtype == np.int64, \
"SampledLabels dtype is {}, not int64".format(
SampledLabels.dtype)
assert Samples.shape == (self.bs, self.NT + self.S)
assert Probabilities.shape == (self.bs, self.NT + self.S)
assert SampledLogits.shape == (self.bs, self.NT + self.S)
assert SampledLabels.shape == (self.bs, self.NT)
assert (SampledLabels == self.Labels).all()
sampled_logits = self.Logits[:, Samples[0][:self.NT]]
sampled_logits -= np.log(Probabilities[:, :self.NT])
np.testing.assert_almost_equal(sampled_logits,
SampledLogits[:, :self.NT])
def test_check_grad(self):
self._check_grad_helper()
for p in self._get_places():
grads = self._get_gradient(['Logits'], p, ['SampledLogits'], [])
np.testing.assert_almost_equal(grads[0].sum(), np.array([1.]))
class TestSampleLogitsOpNoUniq(TestSampleLogitsOp):
def setUp(self):
super(TestSampleLogitsOpNoUniq, self).setUp()
self.attrs = {'num_samples': self.S, 'uniq': False}
class TestSampleLogitsOpWithAccidentalHits(TestSampleLogitsOp):
def setUp(self):
super(TestSampleLogitsOpWithAccidentalHits, self).setUp()
self.attrs = {'num_samples': self.S, 'remove_accidental_hits': False}
if __name__ == "__main__":
unittest.main()