You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
567 lines
19 KiB
567 lines
19 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <math.h> // for sqrt in CPU and CUDA
|
|
#include <Eigen/Dense>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/threadpool.h"
|
|
#include "paddle/fluid/operators/detail/safe_ref.h"
|
|
#include "paddle/fluid/operators/math/algorithm.h"
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
namespace scatter = paddle::operators::math::scatter;
|
|
|
|
class AdamOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
};
|
|
|
|
struct GPUAdam;
|
|
struct CPUAdam;
|
|
|
|
template <typename T, typename Flavour>
|
|
struct AdamFunctor;
|
|
|
|
template <typename T>
|
|
struct AdamFunctor<T, GPUAdam> {
|
|
T beta1_;
|
|
T beta2_;
|
|
T epsilon_;
|
|
|
|
const T* beta1_pow_;
|
|
const T* beta2_pow_;
|
|
const T* moment1_;
|
|
T* moment1_out_;
|
|
const T* moment2_;
|
|
T* moment2_out_;
|
|
const T* lr_;
|
|
const T* grad_;
|
|
const T* param_;
|
|
T* param_out_;
|
|
|
|
AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
|
|
const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
|
|
T* mom2_out, const T* lr, const T* grad, const T* param,
|
|
T* param_out)
|
|
: beta1_(beta1),
|
|
beta2_(beta2),
|
|
epsilon_(epsilon),
|
|
beta1_pow_(beta1_pow),
|
|
beta2_pow_(beta2_pow),
|
|
moment1_(mom1),
|
|
moment1_out_(mom1_out),
|
|
moment2_(mom2),
|
|
moment2_out_(mom2_out),
|
|
lr_(lr),
|
|
grad_(grad),
|
|
param_(param),
|
|
param_out_(param_out) {}
|
|
|
|
inline HOSTDEVICE void operator()(size_t i) const {
|
|
// Merge all memory access together.
|
|
T g = grad_[i];
|
|
T mom1 = moment1_[i];
|
|
T mom2 = moment2_[i];
|
|
T lr = *lr_;
|
|
T beta1_pow = *beta1_pow_;
|
|
T beta2_pow = *beta2_pow_;
|
|
T p = param_[i];
|
|
|
|
// Calculation
|
|
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
|
|
|
|
mom1 = beta1_ * mom1 + (1 - beta1_) * g;
|
|
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
|
|
p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
|
|
|
|
// Write back to global memory
|
|
moment1_out_[i] = mom1;
|
|
moment2_out_[i] = mom2;
|
|
param_out_[i] = p;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct AdamFunctor<T, CPUAdam> {
|
|
T beta1_;
|
|
T beta2_;
|
|
T epsilon_;
|
|
|
|
const T* beta1_pow_;
|
|
const T* beta2_pow_;
|
|
const T* moment1_;
|
|
T* moment1_out_;
|
|
const T* moment2_;
|
|
T* moment2_out_;
|
|
const T* lr_;
|
|
const T* grad_;
|
|
const T* param_;
|
|
T* param_out_;
|
|
|
|
AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
|
|
const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
|
|
T* mom2_out, const T* lr, const T* grad, const T* param,
|
|
T* param_out)
|
|
: beta1_(beta1),
|
|
beta2_(beta2),
|
|
epsilon_(epsilon),
|
|
beta1_pow_(beta1_pow),
|
|
beta2_pow_(beta2_pow),
|
|
moment1_(mom1),
|
|
moment1_out_(mom1_out),
|
|
moment2_(mom2),
|
|
moment2_out_(mom2_out),
|
|
lr_(lr),
|
|
grad_(grad),
|
|
param_(param),
|
|
param_out_(param_out) {}
|
|
|
|
void operator()(size_t numel) const {
|
|
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
|
|
grad_, static_cast<Eigen::Index>(numel)};
|
|
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
|
|
moment1_, static_cast<Eigen::Index>(numel)};
|
|
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
|
|
moment2_, static_cast<Eigen::Index>(numel)};
|
|
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
|
|
param_, static_cast<Eigen::Index>(numel)};
|
|
|
|
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
|
|
param_out_, static_cast<Eigen::Index>(numel)};
|
|
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
|
|
moment1_out_, static_cast<Eigen::Index>(numel)};
|
|
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
|
|
moment2_out_, static_cast<Eigen::Index>(numel)};
|
|
|
|
T lr = *lr_;
|
|
T beta1_pow = *beta1_pow_;
|
|
T beta2_pow = *beta2_pow_;
|
|
|
|
// Calculation
|
|
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
|
|
|
|
moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
|
|
moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
|
|
param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
|
|
}
|
|
};
|
|
|
|
template <typename T, typename Flavour>
|
|
struct SparseAdamFunctor;
|
|
|
|
template <typename T>
|
|
struct SparseAdamFunctor<T, GPUAdam> {
|
|
T beta1_;
|
|
T beta2_;
|
|
T epsilon_;
|
|
|
|
const T* beta1_pow_;
|
|
const T* beta2_pow_;
|
|
const T* moment1_;
|
|
T* moment1_out_;
|
|
const T* moment2_;
|
|
T* moment2_out_;
|
|
const T* lr_;
|
|
const T* grad_;
|
|
const T* param_;
|
|
T* param_out_;
|
|
|
|
const int64_t* rows_;
|
|
int64_t row_numel_;
|
|
int64_t row_count_;
|
|
bool lazy_mode_;
|
|
|
|
SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
|
|
const T* beta2_pow, const T* mom1, T* mom1_out,
|
|
const T* mom2, T* mom2_out, const T* lr, const T* grad,
|
|
const T* param, T* param_out, const int64_t* rows,
|
|
int64_t row_numel, int64_t row_count, bool lazy_mode)
|
|
: beta1_(beta1),
|
|
beta2_(beta2),
|
|
epsilon_(epsilon),
|
|
beta1_pow_(beta1_pow),
|
|
beta2_pow_(beta2_pow),
|
|
moment1_(mom1),
|
|
moment1_out_(mom1_out),
|
|
moment2_(mom2),
|
|
moment2_out_(mom2_out),
|
|
lr_(lr),
|
|
grad_(grad),
|
|
param_(param),
|
|
param_out_(param_out),
|
|
rows_(rows),
|
|
row_numel_(row_numel),
|
|
row_count_(row_count),
|
|
lazy_mode_(lazy_mode) {}
|
|
|
|
inline HOSTDEVICE void adam_update(size_t i, T g) const {
|
|
// The following code is the same as dense
|
|
T mom1 = moment1_[i];
|
|
T mom2 = moment2_[i];
|
|
T lr = *lr_;
|
|
T beta1_pow = *beta1_pow_;
|
|
T beta2_pow = *beta2_pow_;
|
|
T p = param_[i];
|
|
|
|
// Calculation
|
|
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
|
|
|
|
mom1 = beta1_ * mom1 + (1 - beta1_) * g;
|
|
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
|
|
p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
|
|
|
|
// Write back to global memory
|
|
moment1_out_[i] = mom1;
|
|
moment2_out_[i] = mom2;
|
|
param_out_[i] = p;
|
|
}
|
|
|
|
inline HOSTDEVICE void operator()(size_t i) const {
|
|
auto row_idx =
|
|
math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
|
|
if (lazy_mode_ && row_idx < 0) {
|
|
return;
|
|
} else {
|
|
T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
|
|
adam_update(i, g);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct SparseAdamFunctor<T, CPUAdam> {
|
|
T beta1_;
|
|
T beta2_;
|
|
T epsilon_;
|
|
|
|
const T* beta1_pow_;
|
|
const T* beta2_pow_;
|
|
const T* moment1_;
|
|
T* moment1_out_;
|
|
const T* moment2_;
|
|
T* moment2_out_;
|
|
const T* lr_;
|
|
const T* grad_;
|
|
const T* param_;
|
|
T* param_out_;
|
|
|
|
const int64_t* rows_;
|
|
int64_t row_numel_;
|
|
int64_t row_count_;
|
|
|
|
SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
|
|
const T* beta2_pow, const T* mom1, T* mom1_out,
|
|
const T* mom2, T* mom2_out, const T* lr, const T* grad,
|
|
const T* param, T* param_out, const int64_t* rows,
|
|
int64_t row_numel, int64_t row_count, bool lazy_mode)
|
|
: beta1_(beta1),
|
|
beta2_(beta2),
|
|
epsilon_(epsilon),
|
|
beta1_pow_(beta1_pow),
|
|
beta2_pow_(beta2_pow),
|
|
moment1_(mom1),
|
|
moment1_out_(mom1_out),
|
|
moment2_(mom2),
|
|
moment2_out_(mom2_out),
|
|
lr_(lr),
|
|
grad_(grad),
|
|
param_(param),
|
|
param_out_(param_out),
|
|
rows_(rows),
|
|
row_numel_(row_numel),
|
|
row_count_(row_count) {}
|
|
|
|
inline HOSTDEVICE void adam_update(size_t i, T g) const {
|
|
// The following code is the same as dense
|
|
T mom1 = moment1_[i];
|
|
T mom2 = moment2_[i];
|
|
T lr = *lr_;
|
|
T beta1_pow = *beta1_pow_;
|
|
T beta2_pow = *beta2_pow_;
|
|
T p = param_[i];
|
|
|
|
// Calculation
|
|
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
|
|
|
|
mom1 = beta1_ * mom1 + (1 - beta1_) * g;
|
|
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
|
|
p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
|
|
|
|
// Write back to global memory
|
|
moment1_out_[i] = mom1;
|
|
moment2_out_[i] = mom2;
|
|
param_out_[i] = p;
|
|
}
|
|
|
|
inline void operator()(size_t numel) const {
|
|
// lr could be reuse
|
|
T lr = *lr_;
|
|
T beta1_pow = *beta1_pow_;
|
|
T beta2_pow = *beta2_pow_;
|
|
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
|
|
int64_t row_count = static_cast<int64_t>(numel / row_numel_);
|
|
|
|
for (int64_t i = 0, j = 0; i != row_count; ++i) {
|
|
if (i == *(rows_ + j)) {
|
|
for (int64_t k = 0; k != row_numel_; ++k) {
|
|
T g = grad_[j * row_numel_ + k];
|
|
adam_update(i * row_numel_ + k, g);
|
|
}
|
|
++j;
|
|
} else {
|
|
for (int64_t k = 0; k != row_numel_; ++k) {
|
|
T mom1 = moment1_[i * row_numel_ + k];
|
|
T mom2 = moment2_[i * row_numel_ + k];
|
|
T p = param_[i * row_numel_ + k];
|
|
|
|
mom1 = beta1_ * mom1;
|
|
mom2 = beta2_ * mom2;
|
|
|
|
p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
|
|
// Write back to global memory
|
|
moment1_out_[i * row_numel_ + k] = mom1;
|
|
moment2_out_[i * row_numel_ + k] = mom2;
|
|
param_out_[i * row_numel_ + k] = p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class AdamOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const auto* param_var = ctx.InputVar("Param");
|
|
PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
|
|
"The Var(%s)'s type should be LoDTensor, "
|
|
"but the received is %s",
|
|
ctx.Inputs("Param").front(),
|
|
framework::ToTypeName(param_var->Type()));
|
|
|
|
using paddle::framework::LoDTensor;
|
|
using paddle::operators::detail::Ref;
|
|
|
|
int64_t min_row_size_to_use_multithread =
|
|
ctx.Attr<int64_t>("min_row_size_to_use_multithread");
|
|
bool lazy_mode = ctx.Attr<bool>("lazy_mode");
|
|
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
|
|
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
|
|
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
|
|
auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
|
|
// auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
|
|
auto* grad_var = ctx.InputVar("Grad");
|
|
auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
|
|
auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
|
|
auto& lr =
|
|
Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");
|
|
|
|
auto& beta1_pow =
|
|
Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
|
|
auto& beta2_pow =
|
|
Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");
|
|
|
|
auto& param_out =
|
|
Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
|
|
auto& mom1_out =
|
|
Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
|
|
auto& mom2_out =
|
|
Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");
|
|
|
|
if (grad_var->IsType<framework::LoDTensor>()) {
|
|
auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
|
|
|
|
if (platform::is_cpu_place(ctx.GetPlace())) {
|
|
AdamFunctor<T, CPUAdam> functor(
|
|
beta1, beta2, epsilon, beta1_pow.template data<T>(),
|
|
beta2_pow.template data<T>(), mom1.template data<T>(),
|
|
mom1_out.template mutable_data<T>(ctx.GetPlace()),
|
|
mom2.template data<T>(),
|
|
mom2_out.template mutable_data<T>(ctx.GetPlace()),
|
|
lr.template data<T>(), grad.template data<T>(),
|
|
param.template data<T>(),
|
|
param_out.template mutable_data<T>(ctx.GetPlace()));
|
|
functor(param.numel());
|
|
} else if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
AdamFunctor<T, GPUAdam> functor(
|
|
beta1, beta2, epsilon, beta1_pow.template data<T>(),
|
|
beta2_pow.template data<T>(), mom1.template data<T>(),
|
|
mom1_out.template mutable_data<T>(ctx.GetPlace()),
|
|
mom2.template data<T>(),
|
|
mom2_out.template mutable_data<T>(ctx.GetPlace()),
|
|
lr.template data<T>(), grad.template data<T>(),
|
|
param.template data<T>(),
|
|
param_out.template mutable_data<T>(ctx.GetPlace()));
|
|
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(ctx.device_context()),
|
|
param.numel());
|
|
for_range(functor);
|
|
}
|
|
} else if (grad_var->IsType<framework::SelectedRows>()) {
|
|
auto& grad =
|
|
Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
|
|
if (grad.rows().size() == 0) {
|
|
VLOG(3) << "grad row size is 0!!";
|
|
return;
|
|
}
|
|
|
|
std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
|
|
bool is_strict_sorted = true;
|
|
for (size_t i = 1; i < cpu_rows.size(); ++i) {
|
|
if (cpu_rows[i - 1] >= cpu_rows[i]) {
|
|
is_strict_sorted = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
framework::SelectedRows tmp_grad_merge;
|
|
const framework::SelectedRows* grad_merge_ptr;
|
|
if (is_strict_sorted) {
|
|
grad_merge_ptr = &grad;
|
|
} else {
|
|
// merge duplicated rows if any.
|
|
// The rows of grad_merge have been sorted inside MergeAdd functor
|
|
scatter::MergeAdd<DeviceContext, T> merge_func;
|
|
merge_func(ctx.template device_context<DeviceContext>(), grad,
|
|
&tmp_grad_merge, true);
|
|
grad_merge_ptr = &tmp_grad_merge;
|
|
}
|
|
|
|
auto& grad_merge = *grad_merge_ptr;
|
|
auto& grad_tensor = grad_merge.value();
|
|
const T* grad_data = grad_tensor.template data<T>();
|
|
const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
|
|
auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
|
|
|
|
if (platform::is_cpu_place(ctx.GetPlace())) {
|
|
SparseAdamFunctor<T, CPUAdam> functor(
|
|
beta1, beta2, epsilon, beta1_pow.template data<T>(),
|
|
beta2_pow.template data<T>(), mom1.template data<T>(),
|
|
mom1_out.template mutable_data<T>(ctx.GetPlace()),
|
|
mom2.template data<T>(),
|
|
mom2_out.template mutable_data<T>(ctx.GetPlace()),
|
|
lr.template data<T>(), grad_data, param.template data<T>(),
|
|
param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
|
|
grad_merge.rows().size(), lazy_mode);
|
|
if (lazy_mode) {
|
|
VLOG(3) << "run cpu lazy mode";
|
|
size_t row_count = grad_merge.rows().size();
|
|
std::vector<int64_t> cpu_rows(grad_merge.rows());
|
|
for (size_t row_index = 0; row_index < row_count; ++row_index) {
|
|
for (size_t offset = 0; offset < row_numel; ++offset) {
|
|
size_t i = cpu_rows[row_index] * row_numel + offset;
|
|
functor.adam_update(i, grad_data[row_index * row_numel + offset]);
|
|
}
|
|
}
|
|
}
|
|
#ifndef _WIN32
|
|
else if (FLAGS_inner_op_parallelism > 1 && // NOLINT
|
|
min_row_size_to_use_multithread > 0 &&
|
|
param.dims()[0] > min_row_size_to_use_multithread) {
|
|
VLOG(3) << "use multi thread, inner_op_parallelism="
|
|
<< FLAGS_inner_op_parallelism
|
|
<< " min_row_size_to_use_multithread="
|
|
<< min_row_size_to_use_multithread;
|
|
if (FLAGS_inner_op_parallelism > 10) {
|
|
VLOG(1) << "FLAGS_inner_op_parallelism "
|
|
<< FLAGS_inner_op_parallelism << " is two large!";
|
|
}
|
|
auto& grad_rows = grad_merge.rows();
|
|
std::unordered_map<size_t, int> row_id_to_grad_row_offset;
|
|
size_t param_row_count = param.numel() / row_numel;
|
|
if (param_row_count < 1000) {
|
|
VLOG(1) << "param_row_count should be larger then 1000 to use "
|
|
"multi thread, currently "
|
|
<< param_row_count;
|
|
}
|
|
for (size_t i = 0; i < grad_rows.size(); ++i) {
|
|
row_id_to_grad_row_offset[grad_rows[i]] = i;
|
|
}
|
|
std::vector<std::future<void>> fs;
|
|
int64_t line_in_each_thread =
|
|
param_row_count / FLAGS_inner_op_parallelism + 1;
|
|
for (int i = 0; i < FLAGS_inner_op_parallelism; ++i) {
|
|
int64_t start = i * line_in_each_thread;
|
|
int64_t end = (i + 1) * line_in_each_thread;
|
|
if (start >= static_cast<int64_t>(param_row_count)) {
|
|
break;
|
|
}
|
|
if (end > static_cast<int64_t>(param_row_count)) {
|
|
end = static_cast<int64_t>(param_row_count);
|
|
}
|
|
fs.push_back(
|
|
framework::Async([&functor, &row_id_to_grad_row_offset,
|
|
&grad_data, row_numel, start, end]() {
|
|
for (int64_t row_id = start; row_id < end; ++row_id) {
|
|
auto iter = row_id_to_grad_row_offset.find(row_id);
|
|
if (iter != row_id_to_grad_row_offset.end()) {
|
|
for (size_t row_offset = 0U; row_offset < row_numel;
|
|
++row_offset) {
|
|
functor.adam_update(
|
|
row_id * row_numel + row_offset,
|
|
grad_data[iter->second * row_numel + row_offset]);
|
|
}
|
|
} else {
|
|
for (size_t row_offset = 0U; row_offset < row_numel;
|
|
++row_offset) {
|
|
functor.adam_update(row_id * row_numel + row_offset, 0);
|
|
}
|
|
}
|
|
}
|
|
}));
|
|
}
|
|
for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
|
|
}
|
|
#endif // !_WIN32
|
|
else { // NOLINT
|
|
functor(param.numel());
|
|
}
|
|
} else if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
SparseAdamFunctor<T, GPUAdam> functor(
|
|
beta1, beta2, epsilon, beta1_pow.template data<T>(),
|
|
beta2_pow.template data<T>(), mom1.template data<T>(),
|
|
mom1_out.template mutable_data<T>(ctx.GetPlace()),
|
|
mom2.template data<T>(),
|
|
mom2_out.template mutable_data<T>(ctx.GetPlace()),
|
|
lr.template data<T>(), grad_data, param.template data<T>(),
|
|
param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
|
|
grad_merge.rows().size(), lazy_mode);
|
|
|
|
// FIXME(minqiyang): remove BinarySearch in GPU later
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(ctx.device_context()),
|
|
param.numel());
|
|
for_range(functor);
|
|
}
|
|
} else {
|
|
PADDLE_THROW("Variable type not supported by adam_op");
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|