You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/optimizer/momentum.py

249 lines
9.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
from ..fluid.layer_helper import LayerHelper
from ..fluid import unique_name
from ..fluid import layers
import paddle.fluid as fluid
from paddle.fluid.regularizer import L2DecayRegularizer
__all__ = ["Momentum"]
class Momentum(Optimizer):
r"""
Simple Momentum optimizer with velocity state
This optimizer has a flag for Nestrov Momentum.
The update equations are as follows:
.. math::
& velocity = mu * velocity + gradient
& if (use\_nesterov):
&\quad param = param - (gradient + mu * velocity) * learning\_rate
& else:
&\quad param = param - learning\_rate * velocity
Parameters:
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
momentum (float): Momentum factor. The default value is 0.9.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
Often choose to be ``1.0/batch_size``.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to
:ref:`api_guide_Name` .
Examples:
.. code-block:: python
import paddle
import numpy as np
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
back = out.backward()
momentum.step()
momentum.clear_grad()
"""
_velocity_acc_str = "velocity"
def __init__(self,
learning_rate=0.001,
momentum=0.9,
parameters=None,
use_nesterov=False,
weight_decay=None,
grad_clip=None,
multi_precision=False,
rescale_grad=1.0,
name=None):
if learning_rate is None:
raise ValueError("learning_rate is not set")
if momentum is None:
raise ValueError("momentum is not set")
predicate = lambda regular: isinstance(regular, L2DecayRegularizer)
py_regular = None if predicate(weight_decay) else weight_decay
super(Momentum, self).__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=py_regular,
grad_clip=grad_clip,
name=name)
self.type = "momentum"
self._momentum = momentum
self._use_nesterov = bool(use_nesterov)
self._regularization_method = ""
self._regularization_coeff = 0
if (isinstance(weight_decay, L2DecayRegularizer)):
self._regularization_method = "l2_decay"
self._regularization_coeff = weight_decay._regularization_coeff
self._multi_precision = multi_precision
self._rescale_grad = rescale_grad
self._master_weights = {}
if framework.in_dygraph_mode():
self.helper = LayerHelper(self.__class__.__name__)
for p in parameters:
self._add_accumulator(self._velocity_acc_str, p)
def _create_master_weight(self, param):
assert isinstance(self.helper, LayerHelper)
var_name = param.name + "_fp32_master"
var_name = unique_name.generate(var_name)
var = layers.create_global_var(
name=var_name,
shape=param.shape,
value=0,
dtype='float32',
persistable=True)
block = self.helper.startup_program.global_block()
block.append_op(
type="cast",
inputs={"X": [param]},
outputs={"Out": [var]},
attrs={
"in_dtype": param.dtype,
"out_dtype": core.VarDesc.VarType.FP32
})
self._master_weights[param.name] = var
return var
def _get_accumulator(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter variable for which accumulator is to be fetched
Returns:
accumulator variable for the parameter
"""
if self._name is not None:
name = self._name + "_" + name
find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
target_param = self._master_weights[
param.name] if find_master else param
target_name = target_param.name
if (name not in self._accumulators or
target_name not in self._accumulators[name]):
raise Exception("Accumulator {} does not exist for parameter {}".
format(name, target_name))
return self._accumulators[name][target_name]
def _create_accumulators(self, block, parameters):
if framework.in_dygraph_mode():
return
assert isinstance(block, framework.Block)
for p in parameters:
if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
master_p = self._create_master_weight(p)
self._add_accumulator(self._velocity_acc_str, master_p)
continue
if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
warnings.warn(
"Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
"Consider using multi_precision=True option of the Momentum optimizer."
)
self._add_accumulator(self._velocity_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
velocity_acc = self._get_accumulator(self._velocity_acc_str,
param_and_grad[0])
lr = self._create_param_lr(param_and_grad)
if framework.in_dygraph_mode():
_, _ = core.ops.momentum(
param_and_grad[0], param_and_grad[1], velocity_acc, lr,
param_and_grad[0], velocity_acc, 'mu', self._momentum,
'use_nesterov', self._use_nesterov, 'regularization_method',
self._regularization_method, 'regularization_coeff',
self._regularization_coeff)
return None
find_master = self._multi_precision and param_and_grad[
0].dtype == core.VarDesc.VarType.FP16
master_weight = (self._master_weights[param_and_grad[0].name]
if find_master else None)
attrs = {
"mu": self._momentum,
"use_nesterov": self._use_nesterov,
"regularization_method": self._regularization_method,
"regularization_coeff": self._regularization_coeff,
"multi_precision": find_master,
"rescale_grad": self._rescale_grad
}
inputs = {
"Param": [param_and_grad[0]],
"Grad": [param_and_grad[1]],
"Velocity": [velocity_acc],
"LearningRate": [lr]
}
outputs = {
"ParamOut": [param_and_grad[0]],
"VelocityOut": [velocity_acc]
}
if find_master:
inputs["MasterParam"] = master_weight
outputs["MasterParamOut"] = master_weight
# create the momentum optimize op
momentum_op = block.append_op(
type=self.type,
inputs=inputs,
outputs=outputs,
attrs=attrs,
stop_gradient=True)
return momentum_op