You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/custom_op/custom_concat_op.cc

237 lines
7.2 KiB

// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include "concat_and_split.h" // NOLINT
#include "paddle/extension.h"
#define CHECK_INPUT(x) \
PD_CHECK(x.place() == paddle::PlaceType::kCPU, #x " must be a CPU Tensor.")
int64_t ComputeAxis(int64_t axis, int64_t rank) {
PD_CHECK(axis >= -rank && axis < rank,
"The axis is excepted to be in range of [",
-rank,
", ",
rank,
"].");
if (axis < 0) {
axis = axis + rank;
}
return axis > 0 ? axis : 0;
}
std::vector<int64_t> ComputeOutShape(
std::vector<std::vector<int64_t>> in_shapes, int64_t axis) {
size_t n = in_shapes.size();
auto out_shape = in_shapes[0];
size_t zero_dim_size = out_shape.size();
for (size_t i = 1; i < n; ++i) {
PD_CHECK(in_shapes[i].size() == out_shape.size(),
"Input dimension must be same.");
for (size_t j = 0; j < zero_dim_size; ++j) {
if (j == axis) {
out_shape[axis] += in_shapes[i][j];
} else {
PD_CHECK(in_shapes[0][j] == in_shapes[i][j],
"The ",
j,
"-th dimension of input must be same.");
}
}
}
return out_shape;
}
std::vector<paddle::Tensor> ConcatForwardDynamicAxis(
const std::vector<paddle::Tensor>& inputs, const paddle::Tensor& axis_t) {
// check inputs
PD_CHECK(inputs.size() >= 1, "No Tensor need to be concat.");
for (auto& t : inputs) {
CHECK_INPUT(t);
}
CHECK_INPUT(axis_t);
// compute output shape
int64_t rank = static_cast<int64_t>(inputs[0].shape().size());
int64_t axis = axis_t.data<int64_t>()[0];
axis = ComputeAxis(axis, rank);
std::vector<std::vector<int64_t>> in_shapes;
for (auto& t : inputs) {
in_shapes.emplace_back(t.shape());
}
auto out_shape = ComputeOutShape(in_shapes, axis);
// create output
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
out.reshape(out_shape);
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
inputs[0].type(), "ConcatCpuKernel", ([&] {
ConcatCpuKernel<data_t>(inputs, &out, axis);
}));
return {out};
}
std::vector<paddle::Tensor> ConcatBackwardDynamicAxis(
const std::vector<paddle::Tensor>& inputs,
const paddle::Tensor& grad_out,
const paddle::Tensor& axis_t) {
// check input
PD_CHECK(inputs.size() >= 1, "No Tensor need to be concat.");
for (auto& t : inputs) {
CHECK_INPUT(t);
}
CHECK_INPUT(axis_t);
CHECK_INPUT(grad_out);
// compate axis
int64_t rank = static_cast<int64_t>(inputs[0].shape().size());
int64_t axis = axis_t.data<int64_t>()[0];
axis = ComputeAxis(axis, rank);
// create outputs
std::vector<paddle::Tensor> grad_inputs;
for (auto& t : inputs) {
auto grad = paddle::Tensor(paddle::PlaceType::kCPU);
grad.reshape(t.shape());
grad_inputs.emplace_back(grad);
}
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
grad_out.type(), "SplitCpuKernel", ([&] {
SplitCpuKernel<data_t>(grad_out, inputs, &grad_inputs, axis);
}));
return grad_inputs;
}
std::vector<std::vector<int64_t>> ConcatInferShapeDynamicAxis(
const std::vector<std::vector<int64_t>>& input_shapes,
const std::vector<int64_t>& axis_shape) {
return {std::vector<int64_t>(input_shapes[0].size(), -1)};
}
std::vector<paddle::DataType> ConcatInferDtypeDynamicAxis(
const std::vector<paddle::DataType>& input_dtypes,
const paddle::DataType& axis_dtype) {
return {input_dtypes[0]};
}
PD_BUILD_OP(custom_concat)
.Inputs({paddle::Vec("X"), "Axis"})
.Outputs({"Out"})
.SetKernelFn(PD_KERNEL(ConcatForwardDynamicAxis))
.SetInferShapeFn(PD_INFER_SHAPE(ConcatInferShapeDynamicAxis))
.SetInferDtypeFn(PD_INFER_DTYPE(ConcatInferDtypeDynamicAxis));
PD_BUILD_GRAD_OP(custom_concat)
.Inputs({paddle::Vec("X"), paddle::Grad("Out"), "Axis"})
.Outputs({paddle::Grad(paddle::Vec("X"))})
.SetKernelFn(PD_KERNEL(ConcatBackwardDynamicAxis));
std::vector<paddle::Tensor> ConcatForwardStaticAxis(
const std::vector<paddle::Tensor>& inputs, const int64_t& axis) {
// check inputs
PD_CHECK(inputs.size() >= 1, "No Tensor need to be concat.");
for (auto& t : inputs) {
CHECK_INPUT(t);
}
// compute output shape
int64_t rank = static_cast<int64_t>(inputs[0].shape().size());
auto final_axis = ComputeAxis(axis, rank);
std::vector<std::vector<int64_t>> in_shapes;
for (auto& t : inputs) {
in_shapes.emplace_back(t.shape());
}
auto out_shape = ComputeOutShape(in_shapes, final_axis);
// create output
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
out.reshape(out_shape);
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
inputs[0].type(), "ConcatCpuKernel", ([&] {
ConcatCpuKernel<data_t>(inputs, &out, final_axis);
}));
return {out};
}
std::vector<paddle::Tensor> ConcatBackwardStaticAxis(
const std::vector<paddle::Tensor>& inputs,
const paddle::Tensor& grad_out,
const int64_t& axis) {
// check input
PD_CHECK(inputs.size() >= 1, "No Tensor need to be concat.");
for (auto& t : inputs) {
CHECK_INPUT(t);
}
CHECK_INPUT(grad_out);
// compate axis
int64_t rank = static_cast<int64_t>(inputs[0].shape().size());
auto final_axis = ComputeAxis(axis, rank);
// create outputs
std::vector<paddle::Tensor> grad_inputs;
for (auto& t : inputs) {
auto grad = paddle::Tensor(paddle::PlaceType::kCPU);
grad.reshape(t.shape());
grad_inputs.emplace_back(grad);
}
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
grad_out.type(), "SplitCpuKernel", ([&] {
SplitCpuKernel<data_t>(grad_out, inputs, &grad_inputs, final_axis);
}));
return grad_inputs;
}
std::vector<std::vector<int64_t>> ConcatInferShapeStaticAxis(
const std::vector<std::vector<int64_t>>& input_shapes,
const int64_t& axis) {
int64_t rank = static_cast<int64_t>(input_shapes[0].size());
auto final_axis = ComputeAxis(axis, rank);
auto out_shape = ComputeOutShape(input_shapes, final_axis);
return {out_shape};
}
std::vector<paddle::DataType> ConcatInferDtypeStaticAxis(
const std::vector<paddle::DataType>& input_dtypes) {
return {input_dtypes[0]};
}
PD_BUILD_OP(custom_concat_with_attr)
.Inputs({paddle::Vec("X")})
.Outputs({"Out"})
.Attrs({"axis: int64_t"})
.SetKernelFn(PD_KERNEL(ConcatForwardStaticAxis))
.SetInferShapeFn(PD_INFER_SHAPE(ConcatInferShapeStaticAxis))
.SetInferDtypeFn(PD_INFER_DTYPE(ConcatInferDtypeStaticAxis));
PD_BUILD_GRAD_OP(custom_concat_with_attr)
.Inputs({paddle::Vec("X"), paddle::Grad("Out")})
.Outputs({paddle::Grad(paddle::Vec("X"))})
.Attrs({"axis: int64_t"})
.SetKernelFn(PD_KERNEL(ConcatBackwardStaticAxis));