You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
4.2 KiB
141 lines
4.2 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import time
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
def bow_net(data,
|
|
label,
|
|
dict_dim,
|
|
emb_dim=128,
|
|
hid_dim=128,
|
|
hid_dim2=96,
|
|
class_dim=2):
|
|
"""
|
|
bow net
|
|
"""
|
|
emb = fluid.layers.embedding(
|
|
input=data, size=[dict_dim, emb_dim], is_sparse=True)
|
|
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
|
|
bow_tanh = fluid.layers.tanh(bow)
|
|
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
|
|
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
|
|
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
return avg_cost, acc, prediction
|
|
|
|
|
|
def cnn_net(data,
|
|
label,
|
|
dict_dim,
|
|
emb_dim=128,
|
|
hid_dim=128,
|
|
hid_dim2=96,
|
|
class_dim=2,
|
|
win_size=3):
|
|
"""
|
|
conv net
|
|
"""
|
|
emb = fluid.layers.embedding(
|
|
input=data, size=[dict_dim, emb_dim], is_sparse=True)
|
|
conv_3 = fluid.nets.sequence_conv_pool(
|
|
input=emb,
|
|
num_filters=hid_dim,
|
|
filter_size=win_size,
|
|
act="tanh",
|
|
pool_type="max")
|
|
|
|
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
|
|
|
|
prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
return avg_cost, acc, prediction
|
|
|
|
|
|
def lstm_net(data,
|
|
label,
|
|
dict_dim,
|
|
emb_dim=128,
|
|
hid_dim=128,
|
|
hid_dim2=96,
|
|
class_dim=2,
|
|
emb_lr=30.0):
|
|
"""
|
|
lstm net
|
|
"""
|
|
emb = fluid.layers.embedding(
|
|
input=data,
|
|
size=[dict_dim, emb_dim],
|
|
param_attr=fluid.ParamAttr(learning_rate=emb_lr),
|
|
is_sparse=True)
|
|
|
|
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
|
|
|
|
lstm_h, c = fluid.layers.dynamic_lstm(
|
|
input=fc0, size=hid_dim * 4, is_reverse=False)
|
|
|
|
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
|
|
lstm_max_tanh = fluid.layers.tanh(lstm_max)
|
|
|
|
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
|
|
|
|
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
|
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
return avg_cost, acc, prediction
|
|
|
|
|
|
def gru_net(data,
|
|
label,
|
|
dict_dim,
|
|
emb_dim=128,
|
|
hid_dim=128,
|
|
hid_dim2=96,
|
|
class_dim=2,
|
|
emb_lr=400.0):
|
|
"""
|
|
gru net
|
|
"""
|
|
emb = fluid.layers.embedding(
|
|
input=data,
|
|
size=[dict_dim, emb_dim],
|
|
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
|
|
|
|
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 3)
|
|
gru_h = fluid.layers.dynamic_gru(input=fc0, size=hid_dim, is_reverse=False)
|
|
gru_max = fluid.layers.sequence_pool(input=gru_h, pool_type='max')
|
|
gru_max_tanh = fluid.layers.tanh(gru_max)
|
|
fc1 = fluid.layers.fc(input=gru_max_tanh, size=hid_dim2, act='tanh')
|
|
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
|
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
return avg_cost, acc, prediction
|