You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/roll_op.cc

159 lines
6.2 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/roll_op.h"
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class RollOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of RollOp should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
platform::errors::InvalidArgument(
"Output(Out) of RollOp should not be null."));
auto dims = ctx->Attrs().Get<std::vector<int64_t>>("axis");
auto shifts = ctx->Attrs().Get<std::vector<int64_t>>("shifts");
PADDLE_ENFORCE_EQ(dims.size(), shifts.size(),
platform::errors::InvalidArgument(
"Attr(dims).size() should be equl to "
"Attr(shifts).size(). But received "
"Attr(dims).size() = %d, Attr(shifts).size() = %d",
dims.size(), shifts.size()));
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
auto type = ctx->GetInputsVarType("X")[0];
if (type == framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("X", /*->*/ "Out");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class RollGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::InvalidArgument(
"Output(X@GRAD) should be not null."));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
class RollOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) the input tensor.");
AddOutput("Out", "(Tensor), the output tensor.");
AddAttr<std::vector<int64_t>>("shifts",
"The number of places by which the elements "
"of the tensor are shifted.")
.SetDefault({});
AddAttr<std::vector<int64_t>>(
"axis",
"Axis along which to roll. It must have the same size "
"with shifts.")
.SetDefault({});
AddComment(R"DOC(
Roll the tensor along the given dimension(s).
Elements that are shifted beyond the last position
are re-introduced at the first position. If a dimension
is not specified, the tensor will be flattened before
rolling and then restored to the original shape.
)DOC");
}
};
template <typename T>
class RollGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("roll_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(RollGradNoNeedBufferVarsInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(roll, ops::RollOp, ops::RollOpMaker,
ops::RollGradMaker<paddle::framework::OpDesc>,
ops::RollGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(roll_grad, ops::RollGradOp,
ops::RollGradNoNeedBufferVarsInferer);
REGISTER_OP_CPU_KERNEL(
roll, ops::RollKernel<paddle::platform::CPUDeviceContext, float>,
ops::RollKernel<paddle::platform::CPUDeviceContext, double>,
ops::RollKernel<paddle::platform::CPUDeviceContext, int>,
ops::RollKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
roll_grad, ops::RollGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::RollGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::RollGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::RollGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_VERSION(roll)
.AddCheckpoint(
R"ROC(
Upgrade roll add 1 attribute [axis], delete 1 attribute[dims].
)ROC",
paddle::framework::compatible::OpVersionDesc()
.NewAttr("axis",
"(std::vector<int64_t>) Axis along which to roll. "
"It must have the same size with shifts.",
std::vector<int64_t>())
.DeleteAttr("dims",
"(std::vector<int64_t>) Dims along which to roll. "
"It must have the same size with shifts."));