You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/test_parallel_op.py

162 lines
5.1 KiB

import unittest
import paddle.v2.fluid as fluid
import numpy
import sys
# TODO(dzhwinter): get places op check need to be enhanced.
sys.exit(0)
class BaseParallelForTest(unittest.TestCase):
def run_test(self, callback, feed, fetch):
"""
Run the unittest for parallel.for
Args:
callback(callable): A callable function returns a generator. There
are two yields in the generator function. The first yield
returns the data layers, and the second yield returns the loss.
The modified data variables will be sent back during the first
yield.
feed(dict): The executor feeding dictionary.
fetch(list|basestr): The fetch name lists.
Returns:
None
Raises:
AssertionError when the computation of cpu, parallel.for in cpu,
gpu, parallel.for in gpu are different.
"""
cpu = fluid.CPUPlace()
result_cpu = self._run_test_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=cpu,
use_parallel=False)
result_cpu_parallel = self._run_test_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=cpu,
use_parallel=True)
if fluid.core.is_compile_gpu():
gpu = fluid.CUDAPlace(0)
result_gpu = self._run_test_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=gpu,
use_parallel=False)
result_gpu_parallel = self._run_test_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=gpu,
use_parallel=True)
self._assert_same_(fetch, result_cpu, result_cpu_parallel,
result_gpu, result_gpu_parallel)
else:
self._assert_same_(fetch, result_cpu, result_cpu_parallel)
def _run_test_impl_(self, callback, feed, fetch, place, use_parallel=False):
"""
Run a single test, returns the fetch values
Args:
place(Place): the computation place.
use_parallel(bool): Whether use parallel.for or not.
Returns:
Fetched numpy arrays.
"""
if isinstance(fetch, basestring):
fetch = [fetch]
main = fluid.Program()
startup = fluid.Program()
# Fix seed
main.random_seed = 10
startup.random_seed = 10
with fluid.program_guard(main, startup):
generator = callback()
# Automatically insert parallel do if use_parallel = True
if use_parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
data = next(generator)
if isinstance(data, fluid.Variable):
data = [data]
with pd.do():
ins = map(pd.read_input, data)
if len(ins) == 1:
ins = ins[0]
loss = generator.send(ins) # patch input
pd.write_output(loss)
loss = pd()
else:
data = next(generator)
loss = generator.send(data)
self.assertIsNotNone(loss)
avg_loss = fluid.layers.mean(x=loss)
fluid.backward.append_backward(loss=avg_loss)
exe = fluid.Executor(place)
exe.run(startup)
return exe.run(main, feed=feed, fetch_list=fetch)
def _assert_same_(self, fetch, *args):
"""
Assert the return values of `run_test` are same.
Args:
fetch: Fetch list. Used for print error message
*args: The fetch result lists of each situations.
Returns:
None
Raises:
AssertionError
"""
def _impl_(a, b, fetch_id, item_id):
item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
flag = numpy.allclose(a, b, rtol=0.1)
self.assertTrue(flag, "The {0} are different in {1}".format(
fetch[fetch_id], item_str[item_id]))
for i, items in enumerate(zip(*args)):
self.assertGreater(len(items), 0)
for j in range(1, len(items)):
_impl_(items[0], items[j], fetch_id=i, item_id=j)
class ParallelOpTest(BaseParallelForTest):
def test_simple_fc(self):
def __network__():
x = fluid.layers.data(shape=[784], dtype='float32', name='img')
# FIXME: This is a bug of parallel.do
x.stop_gradient = False
x = yield x
hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
loss = fluid.layers.mean(x=hidden)
yield loss
self.run_test(
callback=__network__,
feed={
'img':
numpy.random.random(size=(128 * 3, 784)).astype('float32')
},
fetch='fc1.w@GRAD')
if __name__ == '__main__':
unittest.main()