You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.5 KiB
162 lines
5.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/details/reduce_op_handle.h"
|
|
#include "paddle/fluid/framework/details/reduce_and_gather.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace details {
|
|
|
|
void ReduceOpHandle::RunImpl() {
|
|
// the input and output may have dummy var.
|
|
std::vector<VarHandle *> in_var_handles = GetValidVarHandles(inputs_);
|
|
std::vector<VarHandle *> out_var_handles = GetValidVarHandles(outputs_);
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_var_handles.size(), places_.size(),
|
|
"The number of output should equal to the number of places.");
|
|
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
|
|
"The number of output should be one.");
|
|
|
|
// Wait input done, this Wait is asynchronous operation
|
|
WaitEvents(in_var_handles);
|
|
|
|
// check in the same place
|
|
auto in_0_handle = in_var_handles[0];
|
|
auto pre_place = in_0_handle->place_;
|
|
|
|
std::vector<platform::Place> in_places;
|
|
for (auto *in_handle : in_var_handles) {
|
|
auto in_p = in_handle->place_;
|
|
PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(),
|
|
"Places must be all on CPU or all on CUDA.");
|
|
in_places.emplace_back(in_p);
|
|
}
|
|
|
|
auto out_var = local_scopes_[out_var_handles[0]->scope_idx_]->FindVar(
|
|
out_var_handles[0]->name_);
|
|
|
|
auto pre_in_var =
|
|
local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);
|
|
|
|
if (pre_in_var->IsType<framework::SelectedRows>()) {
|
|
auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
|
|
std::vector<const SelectedRows *> in_selected_rows;
|
|
|
|
for (auto *in_handle : in_var_handles) {
|
|
auto in_var =
|
|
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
|
|
auto &in_sr = in_var->Get<framework::SelectedRows>();
|
|
|
|
PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(),
|
|
"The type of input is not consistent.");
|
|
|
|
in_selected_rows.emplace_back(&in_sr);
|
|
}
|
|
auto trg = out_var->GetMutable<framework::SelectedRows>();
|
|
GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_,
|
|
out_var_handles[0]->place_, trg);
|
|
} else {
|
|
auto pre_in = pre_in_var->Get<framework::LoDTensor>();
|
|
std::vector<LoDTensor> lod_tensors;
|
|
|
|
// can be refined
|
|
for (auto *in_handle : in_var_handles) {
|
|
auto in_var =
|
|
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
|
|
auto &in_sr = in_var->Get<framework::LoDTensor>();
|
|
|
|
PADDLE_ENFORCE_EQ(in_sr.type(), pre_in.type(),
|
|
"The type of input is not consistent.");
|
|
|
|
lod_tensors.emplace_back(in_sr);
|
|
}
|
|
|
|
auto trg = out_var->GetMutable<framework::LoDTensor>();
|
|
trg->Resize(pre_in.dims());
|
|
trg->mutable_data(out_var_handles[0]->place_, pre_in.type());
|
|
|
|
if (paddle::platform::is_cpu_place(pre_place)) {
|
|
ReduceLoDTensor func(lod_tensors, trg);
|
|
VisitDataType(ToDataType(lod_tensors[0].type()), func);
|
|
} else if (paddle::platform::is_gpu_place(pre_place)) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto out_p = out_var_handles[0]->place_;
|
|
int root = boost::get<platform::CUDAPlace>(out_p).device;
|
|
|
|
std::vector<std::function<void()>> all_reduce_calls;
|
|
for (size_t i = 0; i < local_scopes_.size(); ++i) {
|
|
auto &p = in_places[i];
|
|
auto &lod_tensor = lod_tensors[i];
|
|
|
|
int dev_id = boost::get<platform::CUDAPlace>(p).device;
|
|
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
|
|
auto stream = nccl_ctx.stream();
|
|
auto comm = nccl_ctx.comm_;
|
|
|
|
void *buffer = const_cast<void *>(lod_tensor.data<void>());
|
|
void *recvbuffer = nullptr;
|
|
if (root == dev_id) {
|
|
recvbuffer = trg->mutable_data(out_var_handles[0]->place_);
|
|
}
|
|
|
|
all_reduce_calls.emplace_back([=] {
|
|
PADDLE_ENFORCE(platform::dynload::ncclReduce(
|
|
buffer, recvbuffer, static_cast<size_t>(lod_tensor.numel()),
|
|
platform::ToNCCLDataType(lod_tensor.type()), ncclSum, root, comm,
|
|
stream));
|
|
});
|
|
}
|
|
|
|
this->RunAndRecordEvent([&] {
|
|
platform::NCCLGroupGuard guard;
|
|
for (auto &call : all_reduce_calls) {
|
|
call();
|
|
}
|
|
});
|
|
#else
|
|
PADDLE_THROW("CUDA is not support.");
|
|
#endif
|
|
} else {
|
|
PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReduceOpHandle::WaitEvents(
|
|
const std::vector<VarHandle *> &in_var_handles) {
|
|
if (in_var_handles[0]->generated_op_) {
|
|
for (auto *in : in_var_handles) {
|
|
in_var_handles[0]->generated_op_->Wait(dev_ctxes_[in->place_]);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<VarHandle *> ReduceOpHandle::GetValidVarHandles(
|
|
const std::vector<VarHandleBase *> &inputs) {
|
|
std::vector<VarHandle *> in_var_handles;
|
|
for (auto *in : inputs) {
|
|
auto *in_handle = dynamic_cast<VarHandle *>(in);
|
|
if (in_handle) {
|
|
in_var_handles.push_back(in_handle);
|
|
}
|
|
}
|
|
return in_var_handles;
|
|
}
|
|
std::string ReduceOpHandle::Name() const { return "reduce"; }
|
|
} // namespace details
|
|
} // namespace framework
|
|
} // namespace paddle
|