You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/layers/CropLayer.cpp

147 lines
4.8 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "CropLayer.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(crop, CropLayer);
bool CropLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_LE(static_cast<int>(inputLayers_.size()), 2);
CHECK_GE(static_cast<int>(inputLayers_.size()), 1);
crop_axis_ = config_.axis();
for (int i = 0; i < config_.offset_size(); i++) {
crop_offsets_.push_back(config_.offset(i));
}
// 1. get input_0 shape
auto& input0_img_conf = config_.inputs(0).image_conf();
inDims_ = TensorShape({0,
input0_img_conf.channels(),
input0_img_conf.has_img_size_y()
? input0_img_conf.img_size_y()
: input0_img_conf.img_size(),
input0_img_conf.img_size()});
// 2. get target dims from config
if (config_.inputs_size() == 1) {
targetDims_ = TensorShape({config_.shape(0),
config_.shape(1),
config_.shape(2),
config_.shape(3)});
} else {
// 2. get input_1 shape
auto& input1_img_conf = config_.inputs(1).image_conf();
targetDims_ = TensorShape({0,
input1_img_conf.channels(),
input1_img_conf.has_img_size_y()
? input1_img_conf.img_size_y()
: input1_img_conf.img_size(),
input1_img_conf.img_size()});
}
// 3. get final crop corner
int dimSize = 4;
crop_corner_ = {0, 0, 0, 0};
for (int i = 0; i < dimSize; i++) {
if (i >= crop_axis_) {
if (crop_offsets_.size() > 1) {
crop_corner_[i] = crop_offsets_[i - crop_axis_];
} else {
crop_corner_[i] = crop_offsets_[0];
}
}
}
outDims_ = TensorShape(4);
createFunction(
forward_, "Crop", FuncConfig().set("crop_corner", crop_corner_));
createFunction(
backward_, "CropGrad", FuncConfig().set("crop_corner", crop_corner_));
return true;
}
void CropLayer::setOutDims() {
MatrixPtr input = inputLayers_[1]->getOutputValue();
size_t batchSize = input->getHeight();
// get target dims from input_1
if (config_.inputs_size() == 2) {
targetDims_.setDim(0, batchSize);
int ch = config_.inputs(0).image_conf().channels();
if (ch != 0) targetDims_.setDim(1, ch);
int h = inputLayers_[1]->getOutput().getFrameHeight();
if (h != 0) targetDims_.setDim(2, h);
int w = inputLayers_[1]->getOutput().getFrameWidth();
if (w != 0) targetDims_.setDim(3, w);
}
// get final crop shape from target dims and crop axis
std::vector<uint32_t> crop_shape;
int dimSize = 4;
for (int i = 0; i < dimSize; i++) {
if (i >= crop_axis_) {
crop_shape.push_back(targetDims_[i]);
} else {
crop_shape.push_back(inDims_[i]);
}
}
outDims_.reshape(
{crop_shape[0], crop_shape[1], crop_shape[2], crop_shape[3]});
output_.setFrameHeight(crop_shape[2]);
output_.setFrameWidth(crop_shape[3]);
}
void CropLayer::setInDims() {
MatrixPtr input = inputLayers_[0]->getOutputValue();
size_t batchSize = input->getHeight();
inDims_.setDim(0, batchSize);
int h = inputLayers_[0]->getOutput().getFrameHeight();
if (h != 0) inDims_.setDim(2, h);
int w = inputLayers_[0]->getOutput().getFrameWidth();
if (w != 0) inDims_.setDim(3, w);
}
void CropLayer::forward(PassType passType) {
Layer::forward(passType);
setInDims();
setOutDims();
int size = outDims_[1] * outDims_[2] * outDims_[3];
resetOutput(outDims_[0], size);
MatrixPtr outV = getOutputValue();
REGISTER_TIMER_INFO("CropForward", getName().c_str());
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getInputValue(0), inDims_);
outputs.addArg(*getOutputValue(), outDims_, ASSIGN_TO);
forward_[0]->calc(inputs, outputs);
}
void CropLayer::backward(const UpdateCallback& callback) {
(void)callback;
REGISTER_TIMER_INFO("CropBackward", getName().c_str());
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getOutputGrad(), outDims_);
outputs.addArg(*getInputGrad(0), inDims_, ADD_TO);
backward_[0]->calc(inputs, outputs);
}
} // namespace paddle