You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.6 KiB
83 lines
2.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
BATCH_SIZE = 128
|
|
CLIP = 1
|
|
|
|
prog = fluid.framework.Program()
|
|
with fluid.program_guard(main_program=prog):
|
|
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
|
|
|
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
|
|
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
|
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
|
|
|
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
prog_clip = prog.clone()
|
|
|
|
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
|
|
|
|
p_g = fluid.backward.append_backward(loss=avg_cost)
|
|
p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)
|
|
|
|
with fluid.program_guard(main_program=prog_clip):
|
|
fluid.clip.set_gradient_clip(
|
|
fluid.clip.GradientClipByGlobalNorm(clip_norm=CLIP))
|
|
p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
|
|
|
|
grad_list = [elem[1] for elem in p_g]
|
|
grad_clip_list = [elem[1] for elem in p_g_clip]
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
batch_size=BATCH_SIZE)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
count = 0
|
|
for data in train_reader():
|
|
count += 1
|
|
if count > 5:
|
|
break
|
|
out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
|
|
out_clip = exe.run(prog_clip,
|
|
feed=feeder.feed(data),
|
|
fetch_list=grad_clip_list)
|
|
global_norm = 0
|
|
for v in out[1:]:
|
|
global_norm += np.sum(np.power(v, 2))
|
|
global_norm = np.sqrt(global_norm)
|
|
|
|
global_norm_clip = 0
|
|
for v in out_clip[1:]:
|
|
global_norm_clip += np.sum(np.power(v, 2))
|
|
global_norm_clip = np.sqrt(global_norm_clip)
|
|
|
|
if not np.isclose(
|
|
a=global_norm_clip, b=np.minimum(global_norm, CLIP), rtol=5e-3):
|
|
exit(1)
|
|
exit(0)
|