You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.7 KiB
149 lines
5.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.fluid.layers as layers
|
|
from paddle.fluid.framework import Program, program_guard, default_main_program, default_startup_program
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid.optimizer import MomentumOptimizer
|
|
import paddle.fluid.core as core
|
|
import unittest
|
|
import numpy as np
|
|
|
|
|
|
class TestMNISTIfElseOp(unittest.TestCase):
|
|
def test_raw_api(self):
|
|
prog = Program()
|
|
startup_prog = Program()
|
|
with program_guard(prog, startup_prog):
|
|
image = layers.data(name='x', shape=[784], dtype='float32')
|
|
|
|
label = layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
limit = layers.fill_constant_batch_size_like(
|
|
input=label, dtype='int64', shape=[1], value=5.0)
|
|
cond = layers.less_than(x=label, y=limit)
|
|
true_image, false_image = layers.split_lod_tensor(
|
|
input=image, mask=cond)
|
|
|
|
true_out = layers.create_tensor(dtype='float32')
|
|
true_cond = layers.ConditionalBlock([true_image])
|
|
|
|
with true_cond.block():
|
|
hidden = layers.fc(input=true_image, size=100, act='tanh')
|
|
prob = layers.fc(input=hidden, size=10, act='softmax')
|
|
layers.assign(input=prob, output=true_out)
|
|
|
|
false_out = layers.create_tensor(dtype='float32')
|
|
false_cond = layers.ConditionalBlock([false_image])
|
|
|
|
with false_cond.block():
|
|
hidden = layers.fc(input=false_image, size=200, act='tanh')
|
|
prob = layers.fc(input=hidden, size=10, act='softmax')
|
|
layers.assign(input=prob, output=false_out)
|
|
|
|
prob = layers.merge_lod_tensor(
|
|
in_true=true_out, in_false=false_out, mask=cond, x=image)
|
|
loss = layers.cross_entropy(input=prob, label=label)
|
|
avg_loss = layers.mean(loss)
|
|
|
|
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
|
|
optimizer.minimize(avg_loss, startup_prog)
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
batch_size=200)
|
|
|
|
place = core.CPUPlace()
|
|
exe = Executor(place)
|
|
|
|
exe.run(startup_prog)
|
|
PASS_NUM = 100
|
|
for pass_id in range(PASS_NUM):
|
|
for data in train_reader():
|
|
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
y_data = np.expand_dims(y_data, axis=1)
|
|
|
|
outs = exe.run(prog,
|
|
feed={'x': x_data,
|
|
'y': y_data},
|
|
fetch_list=[avg_loss])
|
|
print outs[0]
|
|
if outs[0] < 1.0:
|
|
return
|
|
self.assertFalse(True)
|
|
|
|
def test_ifelse(self):
|
|
prog = Program()
|
|
startup_prog = Program()
|
|
with program_guard(prog, startup_prog):
|
|
image = layers.data(name='x', shape=[784], dtype='float32')
|
|
|
|
label = layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
limit = layers.fill_constant_batch_size_like(
|
|
input=label, dtype='int64', shape=[1], value=5.0)
|
|
cond = layers.less_than(x=label, y=limit)
|
|
ie = layers.IfElse(cond)
|
|
|
|
with ie.true_block():
|
|
true_image = ie.input(image)
|
|
hidden = layers.fc(input=true_image, size=100, act='tanh')
|
|
prob = layers.fc(input=hidden, size=10, act='softmax')
|
|
ie.output(prob)
|
|
|
|
with ie.false_block():
|
|
false_image = ie.input(image)
|
|
hidden = layers.fc(input=false_image, size=200, act='tanh')
|
|
prob = layers.fc(input=hidden, size=10, act='softmax')
|
|
ie.output(prob)
|
|
|
|
prob = ie()
|
|
loss = layers.cross_entropy(input=prob[0], label=label)
|
|
avg_loss = layers.mean(loss)
|
|
|
|
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
|
|
optimizer.minimize(avg_loss, startup_prog)
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
batch_size=200)
|
|
|
|
place = core.CPUPlace()
|
|
exe = Executor(place)
|
|
|
|
exe.run(kwargs['startup_program'])
|
|
PASS_NUM = 100
|
|
for pass_id in range(PASS_NUM):
|
|
for data in train_reader():
|
|
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
y_data = y_data.reshape((y_data.shape[0], 1))
|
|
|
|
outs = exe.run(kwargs['main_program'],
|
|
feed={'x': x_data,
|
|
'y': y_data},
|
|
fetch_list=[avg_loss])
|
|
print outs[0]
|
|
if outs[0] < 1.0:
|
|
return
|
|
self.assertFalse(True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# temp disable if else unittest since it could be buggy.
|
|
exit(0)
|