You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_nn_grad.py

334 lines
10 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
paddle.enable_static()
class TestMulGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
prog = fluid.Program()
with fluid.program_guard(prog):
x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
z = layers.mul(x=x, y=y)
gradient_checker.grad_check([x, y], z, place=place)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestSliceOpDoubleGradCheck(unittest.TestCase):
def func(self, place):
self.config()
out = fluid.layers.slice(
self.inputs, axes=self.axes, starts=self.starts, ends=self.ends)
gradient_checker.double_grad_check(
[self.inputs], out, x_init=self.x_arr, place=place)
def config(self):
self.starts = [1, 0, -1]
self.ends = [3, 3, 6]
self.axes = [0, 1, 2]
self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
self.inputs = layers.create_parameter(
dtype="float64", shape=[3, 4, 5, 2], name='x')
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
self.func(place)
class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
def config(self):
self.starts = [1, -1, 1]
self.ends = [3, 3, 3]
self.axes = [0, 1, 2]
self.x_arr = np.random.random([3, 3, 3]).astype("float64")
self.inputs = layers.create_parameter(
dtype="float64", shape=[3, 3, 3], name='x3')
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
shape = [7, 11]
eps = 0.05
dtype = np.float64
x = layers.data('x', shape, False, dtype)
x.persistable = True
y = layers.reduce_mean(x, dim=0)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
gradient_checker.double_grad_check(
[x], y, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
shape = [7, 11]
eps = 0.05
dtype = np.float64
x = layers.data('x', shape, False, dtype)
x.persistable = True
y = layers.reduce_sum(x, dim=0)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
gradient_checker.double_grad_check(
[x], y, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMulDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
x_shape = [7, 11]
y_shape = [11, 9]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
y = layers.data('y', y_shape, False, dtype)
y.persistable = True
out = layers.mul(x, y)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
gradient_checker.double_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
eps = 0.005
x_shapes = [[2], [2, 3], [2, 4, 3], [2, 3, 4, 5], [2, 3, 4]]
y_shapes = [[2], [3, 2], [2, 4, 5], [2, 3, 3, 5], [4, 3]]
transpose_xs = [False, True, True, False, False]
transpose_ys = [False, True, False, True, False]
dtype = np.float64
typename = "float64"
for i, (x_shape, y_shape, transpose_x, transpose_y) \
in enumerate(zip(x_shapes, y_shapes, transpose_xs, transpose_ys)):
x = layers.create_parameter(
dtype=typename, shape=x_shape, name='x{}'.format(i))
y = layers.create_parameter(
dtype=typename, shape=y_shape, name='y{}'.format(i))
out = layers.matmul(
x, y, transpose_x, transpose_y, name='out{}'.format(i))
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
gradient_checker.double_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestReshapeDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
x_shape = [3, 12]
expand_times = [4, 9]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
out = layers.expand(x, expand_times)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
gradient_checker.double_grad_check(
[x], out, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestExpandDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
x_shape = [3, 12]
new_shape = [4, 9]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
out = layers.reshape(x, new_shape)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
gradient_checker.double_grad_check(
[x], out, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestTileDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
x_shape = [3, 12]
repeat_times = [4, 9]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
out = paddle.tile(x, repeat_times)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
gradient_checker.double_grad_check(
[x], out, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestExpandV2DoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
x_shape = [1, 12]
new_shape = [4, 12]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
out = paddle.expand(x, new_shape)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
gradient_checker.double_grad_check(
[x], out, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestSqueezeDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
x_shape = [1, 3, 1, 40]
axes = [0, 2]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
out = paddle.squeeze(x, axes)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
gradient_checker.double_grad_check(
[x], out, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
x_shape = [3, 40]
axes = [1, 2]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
out = paddle.unsqueeze(x, axes)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
gradient_checker.double_grad_check(
[x], out, x_init=x_arr, place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
unittest.main()