You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							5.9 KiB
						
					
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							5.9 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/edit_distance_op.h"
 | 
						|
#include "paddle/fluid/operators/math/math_function.h"
 | 
						|
#include "paddle/fluid/platform/cuda_primitives.h"
 | 
						|
#include "paddle/fluid/platform/gpu_info.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using platform::PADDLE_CUDA_NUM_THREADS;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void FillFirstRow(T* dist, const int N) {
 | 
						|
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | 
						|
  if (idx < N + 1) {
 | 
						|
    dist[idx] = idx;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
 | 
						|
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | 
						|
  if (idx < M + 1) {
 | 
						|
    dist[idx * (N + 1)] = idx;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void Levenshtein(T* dist, const int64_t* x1, const int64_t* x2,
 | 
						|
                            const int M, const int N, const int start) {
 | 
						|
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | 
						|
  int offset = N;
 | 
						|
  int index = start + idx * offset;
 | 
						|
  int row = index / (N + 1);
 | 
						|
  int col = index % (N + 1);
 | 
						|
  if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
 | 
						|
    int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
 | 
						|
    int dels = dist[(row - 1) * (N + 1) + col] + 1;
 | 
						|
    int ins = dist[row * (N + 1) + col - 1] + 1;
 | 
						|
    int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
 | 
						|
    dist[index] = min(dels, min(ins, subs));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void SetOutput(T* out, const T* dist, const int M, const int N,
 | 
						|
                          bool normalized) {
 | 
						|
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | 
						|
  if (idx == 0) {
 | 
						|
    out[0] = normalized ? dist[M * (N + 1) + N] / N : dist[M * (N + 1) + N];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Place, typename T>
 | 
						|
class EditDistanceGPUKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const {
 | 
						|
    auto* out_t = ctx.Output<framework::Tensor>("Out");
 | 
						|
 | 
						|
    auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
 | 
						|
    auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
 | 
						|
    auto* sequence_num = ctx.Output<framework::Tensor>("SequenceNum");
 | 
						|
    sequence_num->mutable_data<int64_t>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto normalized = ctx.Attr<bool>("normalized");
 | 
						|
    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
 | 
						|
                      ctx.device_context())
 | 
						|
                      .stream();
 | 
						|
 | 
						|
    auto hyp_lod = x1_t->lod()[0];
 | 
						|
    auto ref_lod = x2_t->lod()[0];
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        hyp_lod.size() == ref_lod.size(),
 | 
						|
        "Input(Hyps) and Input(Refs) must have the same batch size.");
 | 
						|
    for (size_t i = 1; i < ref_lod.size(); ++i) {
 | 
						|
      PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1],
 | 
						|
                     "Reference string %d is empty.", i);
 | 
						|
    }
 | 
						|
 | 
						|
    const size_t num_strs = hyp_lod.size() - 1;
 | 
						|
    math::SetConstant<platform::CUDADeviceContext, int64_t> set_constant;
 | 
						|
    set_constant(ctx.template device_context<platform::CUDADeviceContext>(),
 | 
						|
                 sequence_num, static_cast<int64_t>(num_strs));
 | 
						|
 | 
						|
    out_t->Resize({static_cast<int64_t>(num_strs), 1});
 | 
						|
    out_t->mutable_data<T>(ctx.GetPlace());
 | 
						|
    auto out = out_t->data<T>();
 | 
						|
 | 
						|
    T distance = 0.0;
 | 
						|
    for (size_t num = 0; num < num_strs; num++) {
 | 
						|
      auto m = static_cast<int64_t>(hyp_lod[num + 1] - hyp_lod[num]);
 | 
						|
      auto n = static_cast<int64_t>(ref_lod[num + 1] - ref_lod[num]);
 | 
						|
      if (m == 0 || n == 0) {
 | 
						|
        distance = std::max(m, n);
 | 
						|
        if (normalized) {
 | 
						|
          PADDLE_ENFORCE(n > 0,
 | 
						|
                         "The reference string (#%d) cannot be empty "
 | 
						|
                         "when Attr(normalized) is enabled.",
 | 
						|
                         n);
 | 
						|
          distance = distance / n;
 | 
						|
        }
 | 
						|
        memory::Copy(boost::get<Place>(ctx.GetPlace()), out + num,
 | 
						|
                     platform::CPUPlace(), &distance, sizeof(T), stream);
 | 
						|
      } else {
 | 
						|
        framework::Tensor dist_t;
 | 
						|
        dist_t.Resize({m + 1, n + 1});
 | 
						|
        dist_t.mutable_data<T>(ctx.GetPlace());
 | 
						|
        auto dist = dist_t.data<T>();
 | 
						|
        auto x1 = x1_t->data<int64_t>() + hyp_lod[num];
 | 
						|
        auto x2 = x2_t->data<int64_t>() + ref_lod[num];
 | 
						|
 | 
						|
        FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
 | 
						|
                             PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);
 | 
						|
 | 
						|
        FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
 | 
						|
                          PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
 | 
						|
        // Compute the elements of distance matrix in the anti-diagonal diretion
 | 
						|
        for (int64_t slice = 2; slice < m + n + 1; ++slice) {
 | 
						|
          int z_m = slice < m + 1 ? 0 : slice - m;
 | 
						|
          int z_n = slice < n + 1 ? 0 : slice - n;
 | 
						|
          int size = slice - (z_m + z_n) + 1;  // number of elments in the same
 | 
						|
                                               // anti-diagonal line to update
 | 
						|
          // the start index at which computes from
 | 
						|
          int start = slice < n + 1 ? slice : (z_n + 1) * (n + 1) - 1;
 | 
						|
          Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
 | 
						|
                           PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2,
 | 
						|
                                                                 m, n, start);
 | 
						|
        }
 | 
						|
        SetOutput<T><<<1, 1, 0, stream>>>(out + num, dist, m, n, normalized);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
 | 
						|
REGISTER_OP_CUDA_KERNEL(
 | 
						|
    edit_distance,
 | 
						|
    ops::EditDistanceGPUKernel<paddle::platform::CUDAPlace, float>);
 |