You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.1 KiB
172 lines
6.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import six
|
|
import tarfile
|
|
import numpy as np
|
|
import collections
|
|
|
|
from paddle.io import Dataset
|
|
from paddle.dataset.common import _check_exists_and_download
|
|
|
|
__all__ = ['Imikolov']
|
|
|
|
URL = 'https://dataset.bj.bcebos.com/imikolov%2Fsimple-examples.tgz'
|
|
MD5 = '30177ea32e27c525793142b6bf2c8e2d'
|
|
|
|
|
|
class Imikolov(Dataset):
|
|
"""
|
|
Implementation of imikolov dataset.
|
|
|
|
Args:
|
|
data_file(str): path to data tar file, can be set None if
|
|
:attr:`download` is True. Default None
|
|
data_type(str): 'NGRAM' or 'SEQ'. Default 'NGRAM'.
|
|
window_size(int): sliding window size for 'NGRAM' data. Default -1.
|
|
mode(str): 'train' 'test' mode. Default 'train'.
|
|
min_word_freq(int): minimal word frequence for building word dictionary. Default 50.
|
|
download(bool): whether to download dataset automatically if
|
|
:attr:`data_file` is not set. Default True
|
|
|
|
Returns:
|
|
Dataset: instance of imikolov dataset
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
from paddle.text.datasets import Imikolov
|
|
|
|
class SimpleNet(paddle.nn.Layer):
|
|
def __init__(self):
|
|
super(SimpleNet, self).__init__()
|
|
|
|
def forward(self, src, trg):
|
|
return paddle.sum(src), paddle.sum(trg)
|
|
|
|
paddle.disable_static()
|
|
|
|
imikolov = Imikolov(mode='train', data_type='SEQ', window_size=2)
|
|
|
|
for i in range(10):
|
|
src, trg = imikolov[i]
|
|
src = paddle.to_tensor(src)
|
|
trg = paddle.to_tensor(trg)
|
|
|
|
model = SimpleNet()
|
|
src, trg = model(src, trg)
|
|
print(src.numpy().shape, trg.numpy().shape)
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
data_file=None,
|
|
data_type='NGRAM',
|
|
window_size=-1,
|
|
mode='train',
|
|
min_word_freq=50,
|
|
download=True):
|
|
assert data_type.upper() in ['NGRAM', 'SEQ'], \
|
|
"data type should be 'NGRAM', 'SEQ', but got {}".format(data_type)
|
|
self.data_type = data_type.upper()
|
|
|
|
assert mode.lower() in ['train', 'test'], \
|
|
"mode should be 'train', 'test', but got {}".format(mode)
|
|
self.mode = mode.lower()
|
|
|
|
self.window_size = window_size
|
|
self.min_word_freq = min_word_freq
|
|
|
|
self.data_file = data_file
|
|
if self.data_file is None:
|
|
assert download, "data_file is not set and downloading automatically disabled"
|
|
self.data_file = _check_exists_and_download(data_file, URL, MD5,
|
|
'imikolov', download)
|
|
|
|
# Build a word dictionary from the corpus
|
|
self.word_idx = self._build_work_dict(min_word_freq)
|
|
|
|
# read dataset into memory
|
|
self._load_anno()
|
|
|
|
def word_count(self, f, word_freq=None):
|
|
if word_freq is None:
|
|
word_freq = collections.defaultdict(int)
|
|
|
|
for l in f:
|
|
for w in l.strip().split():
|
|
word_freq[w] += 1
|
|
word_freq['<s>'] += 1
|
|
word_freq['<e>'] += 1
|
|
|
|
return word_freq
|
|
|
|
def _build_work_dict(self, cutoff):
|
|
train_filename = './simple-examples/data/ptb.train.txt'
|
|
test_filename = './simple-examples/data/ptb.valid.txt'
|
|
with tarfile.open(self.data_file) as tf:
|
|
trainf = tf.extractfile(train_filename)
|
|
testf = tf.extractfile(test_filename)
|
|
word_freq = self.word_count(testf, self.word_count(trainf))
|
|
if '<unk>' in word_freq:
|
|
# remove <unk> for now, since we will set it as last index
|
|
del word_freq['<unk>']
|
|
|
|
word_freq = [
|
|
x for x in six.iteritems(word_freq) if x[1] > self.min_word_freq
|
|
]
|
|
|
|
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
|
|
words, _ = list(zip(*word_freq_sorted))
|
|
word_idx = dict(list(zip(words, six.moves.range(len(words)))))
|
|
word_idx['<unk>'] = len(words)
|
|
|
|
return word_idx
|
|
|
|
def _load_anno(self):
|
|
self.data = []
|
|
with tarfile.open(self.data_file) as tf:
|
|
filename = './simple-examples/data/ptb.{}.txt'.format(self.mode)
|
|
f = tf.extractfile(filename)
|
|
|
|
UNK = self.word_idx['<unk>']
|
|
for l in f:
|
|
if self.data_type == 'NGRAM':
|
|
assert self.window_size > -1, 'Invalid gram length'
|
|
l = ['<s>'] + l.strip().split() + ['<e>']
|
|
if len(l) >= self.window_size:
|
|
l = [self.word_idx.get(w, UNK) for w in l]
|
|
for i in six.moves.range(self.window_size, len(l) + 1):
|
|
self.data.append(tuple(l[i - self.window_size:i]))
|
|
elif self.data_type == 'SEQ':
|
|
l = l.strip().split()
|
|
l = [self.word_idx.get(w, UNK) for w in l]
|
|
src_seq = [self.word_idx['<s>']] + l
|
|
trg_seq = l + [self.word_idx['<e>']]
|
|
if self.window_size > 0 and len(src_seq) > self.window_size:
|
|
continue
|
|
self.data.append((src_seq, trg_seq))
|
|
else:
|
|
assert False, 'Unknow data type'
|
|
|
|
def __getitem__(self, idx):
|
|
return tuple([np.array(d) for d in self.data[idx]])
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|